BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26917720)

  • 1. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.
    McLaughlin D; Coey CT; Yang WC; Drohat AC; Matunis MJ
    J Biol Chem; 2016 Apr; 291(17):9014-24. PubMed ID: 26917720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase.
    Coey CT; Drohat AC
    Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMO-modification and elimination of the active DNA demethylation enzyme TDG in cultured human cells.
    Moriyama T; Fujimitsu Y; Yoshikai Y; Sasano T; Yamada K; Murakami M; Urano T; Sugasawa K; Saitoh H
    Biochem Biophys Res Commun; 2014 May; 447(3):419-24. PubMed ID: 24727457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity.
    Smet-Nocca C; Wieruszeski JM; Léger H; Eilebrecht S; Benecke A
    BMC Biochem; 2011 Feb; 12():4. PubMed ID: 21284855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation.
    Steinacher R; Schär P
    Curr Biol; 2005 Apr; 15(7):616-23. PubMed ID: 15823533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover.
    Hardeland U; Steinacher R; Jiricny J; Schär P
    EMBO J; 2002 Mar; 21(6):1456-64. PubMed ID: 11889051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment.
    Mohan RD; Rao A; Gagliardi J; Tini M
    Mol Cell Biol; 2007 Jan; 27(1):229-43. PubMed ID: 17060459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.
    Maiti A; Drohat AC
    J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation.
    Steinacher R; Barekati Z; Botev P; Kuśnierczyk A; Slupphaug G; Schär P
    EMBO J; 2019 Jan; 38(1):. PubMed ID: 30523148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1.
    Baba D; Maita N; Jee JG; Uchimura Y; Saitoh H; Sugasawa K; Hanaoka F; Tochio H; Hiroaki H; Shirakawa M
    Nature; 2005 Jun; 435(7044):979-82. PubMed ID: 15959518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex.
    Fitzgerald ME; Drohat AC
    J Biol Chem; 2008 Nov; 283(47):32680-90. PubMed ID: 18805789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of SUMO-3-modified thymine-DNA glycosylase.
    Baba D; Maita N; Jee JG; Uchimura Y; Saitoh H; Sugasawa K; Hanaoka F; Tochio H; Hiroaki H; Shirakawa M
    J Mol Biol; 2006 May; 359(1):137-47. PubMed ID: 16626738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision.
    Slyvka A; Mierzejewska K; Bochtler M
    Sci Rep; 2017 Aug; 7(1):9001. PubMed ID: 28827588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase.
    Pidugu LS; Dai Q; Malik SS; Pozharski E; Drohat AC
    J Am Chem Soc; 2019 Nov; 141(47):18851-18861. PubMed ID: 31693361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA.
    Maiti A; Michelson AZ; Armwood CJ; Lee JK; Drohat AC
    J Am Chem Soc; 2013 Oct; 135(42):15813-22. PubMed ID: 24063363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base excision repair of tandem modifications in a methylated CpG dinucleotide.
    Sassa A; Çağlayan M; Dyrkheeva NS; Beard WA; Wilson SH
    J Biol Chem; 2014 May; 289(20):13996-4008. PubMed ID: 24695738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase.
    Chang C; Yang Y; Li J; Park SH; Fang GC; Liang C; Cao W
    DNA Repair (Amst); 2022 Nov; 119():103408. PubMed ID: 36179537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation.
    Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.