BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26918257)

  • 1. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin.
    Tripathi R; Nair NN
    J Phys Chem B; 2016 Mar; 120(10):2681-90. PubMed ID: 26918257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation.
    Sharma S; Bandyopadhyay P
    J Mol Model; 2012 Feb; 18(2):481-92. PubMed ID: 21541744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate.
    Mehta SC; Furey IM; Pemberton OA; Boragine DM; Chen Y; Palzkill T
    J Biol Chem; 2021; 296():100155. PubMed ID: 33273017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C β-lactamases with β-lactam antibiotics.
    Tripathi R; Nair NN
    J Am Chem Soc; 2013 Oct; 135(39):14679-90. PubMed ID: 24010547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed quantum mechanical/molecular mechanical (QM/MM) study of the deacylation reaction in a penicillin binding protein (PBP) versus in a class C beta-lactamase.
    Gherman BF; Goldberg SD; Cornish VW; Friesner RA
    J Am Chem Soc; 2004 Jun; 126(24):7652-64. PubMed ID: 15198613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling study on a hydrolytic mechanism of class A beta-lactamases.
    Ishiguro M; Imajo S
    J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem.
    Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W
    J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into avibactam mediated class C β-lactamase inhibition: competition between reverse acylation and hydrolysis through desulfation.
    Das CK; Nair NN
    Phys Chem Chem Phys; 2018 May; 20(21):14482-14490. PubMed ID: 29785432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of water molecules in the deacylation of acylated structures of class A beta-lactamase.
    Ishiguro M; Imajo S
    Drug Des Discov; 1999 Aug; 16(2):131-43. PubMed ID: 10533809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of protein flexibility in enzymatic catalysis: quantum mechanical-molecular mechanical study of the deacylation reaction in class A beta-lactamases.
    Castillo R; Silla E; Tuñón I
    J Am Chem Soc; 2002 Feb; 124(8):1809-16. PubMed ID: 11853460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic Snapshots of Class A β-Lactamase Catalysis Reveal Structural Changes That Facilitate β-Lactam Hydrolysis.
    Pan X; He Y; Lei J; Huang X; Zhao Y
    J Biol Chem; 2017 Mar; 292(10):4022-4033. PubMed ID: 28100776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
    Chen Y; Minasov G; Roth TA; Prati F; Shoichet BK
    J Am Chem Soc; 2006 Mar; 128(9):2970-6. PubMed ID: 16506777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigation on reaction of sulbactam with wild-type SHV-1 β-lactamase: acylation, tautomerization, and deacylation.
    Li R; Liao JM; Gu CR; Wang YT; Chen CL
    J Phys Chem B; 2011 Sep; 115(34):10298-310. PubMed ID: 21797222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase.
    Cha SS; An YJ; Jeong CS; Kim MK; Jeon JH; Lee CM; Lee HS; Kang SG; Lee JH
    Proteins; 2013 Nov; 81(11):2045-51. PubMed ID: 23737193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis.
    He Y; Lei J; Pan X; Huang X; Zhao Y
    Sci Rep; 2020 Jun; 10(1):10205. PubMed ID: 32576842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism.
    Knox R; Lento C; Wilson DJ
    J Mol Biol; 2018 Sep; 430(18 Pt B):3311-3322. PubMed ID: 29964048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
    Brown NG; Shanker S; Prasad BV; Palzkill T
    J Biol Chem; 2009 Nov; 284(48):33703-12. PubMed ID: 19812041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.