These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2691829)

  • 21. Muscle satellite cell and atypical myogenic progenitor response following exercise.
    Parise G; McKinnell IW; Rudnicki MA
    Muscle Nerve; 2008 May; 37(5):611-9. PubMed ID: 18351585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo.
    Zimowska M; Brzoska E; Swierczynska M; Streminska W; Moraczewski J
    Int J Dev Biol; 2008; 52(2-3):307-14. PubMed ID: 18311722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Satellite cell regulation following myotrauma caused by resistance exercise.
    Vierck J; O'Reilly B; Hossner K; Antonio J; Byrne K; Bucci L; Dodson M
    Cell Biol Int; 2000; 24(5):263-72. PubMed ID: 10805959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of myogenic precursor cells after muscle injury.
    Hurme T; Kalimo H
    Med Sci Sports Exerc; 1992 Feb; 24(2):197-205. PubMed ID: 1549008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Satellite cells and myonuclei in long-term denervated rat muscles.
    Rodrigues Ade C; Schmalbruch H
    Anat Rec; 1995 Dec; 243(4):430-7. PubMed ID: 8597289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle regeneration: cellular and molecular events.
    Karalaki M; Fili S; Philippou A; Koutsilieris M
    In Vivo; 2009; 23(5):779-96. PubMed ID: 19779115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles.
    Kherif S; Lafuma C; Dehaupas M; Lachkar S; Fournier JG; Verdière-Sahuqué M; Fardeau M; Alameddine HS
    Dev Biol; 1999 Jan; 205(1):158-70. PubMed ID: 9882504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta.
    Allen RE; Boxhorn LK
    J Cell Physiol; 1987 Dec; 133(3):567-72. PubMed ID: 3480289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cdk9-55: a new player in muscle regeneration.
    Giacinti C; Musarò A; De Falco G; Jourdan I; Molinaro M; Bagella L; Simone C; Giordano A
    J Cell Physiol; 2008 Sep; 216(3):576-82. PubMed ID: 18546201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy.
    Mouly V; Aamiri A; Bigot A; Cooper RN; Di Donna S; Furling D; Gidaro T; Jacquemin V; Mamchaoui K; Negroni E; Périé S; Renault V; Silva-Barbosa SD; Butler-Browne GS
    Acta Physiol Scand; 2005 May; 184(1):3-15. PubMed ID: 15847639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle reconstitution by muscle satellite cell descendants with stem cell-like properties.
    Hashimoto N; Murase T; Kondo S; Okuda A; Inagawa-Ogashiwa M
    Development; 2004 Nov; 131(21):5481-90. PubMed ID: 15469979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testosterone treatment results in quiescent satellite cells being activated and recruited into cell cycle in rat levator ani muscle.
    Joubert Y; Tobin C
    Dev Biol; 1995 May; 169(1):286-94. PubMed ID: 7750644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Satellite cells of normal and dystrophic muscle].
    Rèpice F; Vannelli GB; Balboni GC
    Arch Ital Anat Embriol; 1989; 94(4):393-403. PubMed ID: 2640787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myosatellite cells, growth, and regeneration in murine dystrophic muscle: a quantitative study.
    Ontell M; Feng KC; Klueber K; Dunn RF; Taylor F
    Anat Rec; 1984 Feb; 208(2):159-74. PubMed ID: 6703334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study.
    Snow MH
    Anat Rec; 1977 Jun; 188(2):201-17. PubMed ID: 869238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of skeletal muscle development by the central nervous system in the fetal pig.
    Campion DR; Richardson RL; Kraeling RR; Reagan JO
    Growth; 1978 Jun; 42(2):189-204. PubMed ID: 680581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles.
    Irintchev A; Zeschnigk M; Starzinski-Powitz A; Wernig A
    Dev Dyn; 1994 Apr; 199(4):326-37. PubMed ID: 8075434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anabolic potential and regulation of the skeletal muscle satellite cell populations.
    Scimè A; Rudnicki MA
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):214-9. PubMed ID: 16607119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?
    Paulsen G; Mikkelsen UR; Raastad T; Peake JM
    Exerc Immunol Rev; 2012; 18():42-97. PubMed ID: 22876722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embryonic myogenesis pathways in muscle regeneration.
    Zhao P; Hoffman EP
    Dev Dyn; 2004 Feb; 229(2):380-92. PubMed ID: 14745964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.