These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26918461)
1. Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations. Itoyama S; Doitomi K; Kamachi T; Shiota Y; Yoshizawa K Inorg Chem; 2016 Mar; 55(6):2771-5. PubMed ID: 26918461 [TBL] [Abstract][Full Text] [Related]
2. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. Yoshizawa K; Shiota Y J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545 [TBL] [Abstract][Full Text] [Related]
3. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study. Shiota Y; Juhász G; Yoshizawa K Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646 [TBL] [Abstract][Full Text] [Related]
4. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective. Da Silva JC; Pennifold RC; Harvey JN; Rocha WR Dalton Trans; 2016 Feb; 45(6):2492-504. PubMed ID: 26697968 [TBL] [Abstract][Full Text] [Related]
5. Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. Culpepper MA; Cutsail GE; Gunderson WA; Hoffman BM; Rosenzweig AC J Am Chem Soc; 2014 Aug; 136(33):11767-75. PubMed ID: 25059917 [TBL] [Abstract][Full Text] [Related]
6. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related]
8. Evidence for oxygen binding at the active site of particulate methane monooxygenase. Culpepper MA; Cutsail GE; Hoffman BM; Rosenzweig AC J Am Chem Soc; 2012 May; 134(18):7640-3. PubMed ID: 22540911 [TBL] [Abstract][Full Text] [Related]
9. Chemical Plausibility of Cu(III) with Biological Ligation in pMMO. Citek C; Gary JB; Wasinger EC; Stack TD J Am Chem Soc; 2015 Jun; 137(22):6991-4. PubMed ID: 26020834 [TBL] [Abstract][Full Text] [Related]
10. Geometric and electronic structure of [{Cu(MeAN)}2(μ-η2:η2(O2(2-)))]2+ with an unusually long O-O bond: O-O bond weakening vs activation for reductive cleavage. Park GY; Qayyum MF; Woertink J; Hodgson KO; Hedman B; Narducci Sarjeant AA; Solomon EI; Karlin KD J Am Chem Soc; 2012 May; 134(20):8513-24. PubMed ID: 22571744 [TBL] [Abstract][Full Text] [Related]
11. Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex. Poater A; Ribas X; Llobet A; Cavallo L; Solà M J Am Chem Soc; 2008 Dec; 130(52):17710-7. PubMed ID: 19055343 [TBL] [Abstract][Full Text] [Related]
12. Primary amine stabilization of a dicopper(III) bis(μ-oxo) species: modeling the ligation in pMMO. Citek C; Lin BL; Phelps TE; Wasinger EC; Stack TD J Am Chem Soc; 2014 Oct; 136(41):14405-8. PubMed ID: 25268334 [TBL] [Abstract][Full Text] [Related]
14. Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase. Cao L; Caldararu O; Rosenzweig AC; Ryde U Angew Chem Int Ed Engl; 2018 Jan; 57(1):162-166. PubMed ID: 29164769 [TBL] [Abstract][Full Text] [Related]
15. Role of Amino Acid Residues for Dioxygen Activation in the Second Coordination Sphere of the Dicopper Site of pMMO. Miyanishi M; Abe T; Hori Y; Shiota Y; Yoshizawa K Inorg Chem; 2019 Sep; 58(18):12280-12288. PubMed ID: 31464432 [TBL] [Abstract][Full Text] [Related]
16. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex. Garcia-Bosch I; Ribas X; Costas M Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002 [TBL] [Abstract][Full Text] [Related]
17. Geometric and electronic structure of the heme-peroxo-copper complex [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4). Del Río D; Sarangi R; Chufán EE; Karlin KD; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2005 Aug; 127(34):11969-78. PubMed ID: 16117536 [TBL] [Abstract][Full Text] [Related]
19. L-edge X-ray absorption spectroscopy and DFT calculations on Cu2O2 species: direct electrophilic aromatic attack by side-on peroxo bridged dicopper(II) complexes. Qayyum MF; Sarangi R; Fujisawa K; Stack TD; Karlin KD; Hodgson KO; Hedman B; Solomon EI J Am Chem Soc; 2013 Nov; 135(46):17417-31. PubMed ID: 24102191 [TBL] [Abstract][Full Text] [Related]
20. The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monooxygenase in Methylococcus capsulatus (Bath) is a Cu(I) sponge. Yu SS; Ji CZ; Wu YP; Lee TL; Lai CH; Lin SC; Yang ZL; Wang VC; Chen KH; Chan SI Biochemistry; 2007 Dec; 46(48):13762-74. PubMed ID: 17985930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]