These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2691875)
21. Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon. Caslake LF; Ashraf SI; Summers AO J Bacteriol; 1997 Mar; 179(5):1787-95. PubMed ID: 9045842 [TBL] [Abstract][Full Text] [Related]
22. Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. Ross W; Park SJ; Summers AO J Bacteriol; 1989 Jul; 171(7):4009-18. PubMed ID: 2661542 [TBL] [Abstract][Full Text] [Related]
23. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Parkhill J; Brown NL Nucleic Acids Res; 1990 Sep; 18(17):5157-62. PubMed ID: 2169606 [TBL] [Abstract][Full Text] [Related]
24. Characteristics of Escherichia coli HB101 and Pseudomonas putida PpY101 harboring a recombinant plasmid with tandem insertion of the mercury resistance operon. Kurabayashi T; Iwasaki K; Uchiyama H; Nakamura K; Tanaka H; Yagi O Biosci Biotechnol Biochem; 1997 Jul; 61(7):1187-9. PubMed ID: 9255983 [TBL] [Abstract][Full Text] [Related]
25. Restriction pattern and polypeptide homology among plasmid-borne mercury resistance determinants. Jobling MG; Peters SE; Ritchie DA Plasmid; 1988 Sep; 20(2):106-12. PubMed ID: 2853390 [TBL] [Abstract][Full Text] [Related]
26. Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Lund PA; Brown NL Gene; 1987; 52(2-3):207-14. PubMed ID: 3038684 [TBL] [Abstract][Full Text] [Related]
27. Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Huang CC; Narita M; Yamagata T; Endo G Gene; 1999 Nov; 239(2):361-6. PubMed ID: 10548738 [TBL] [Abstract][Full Text] [Related]
29. Thiobacillus ferrooxidans mer operon: sequence analysis of the promoter and adjacent genes. Inoue C; Sugawara K; Kusano T Gene; 1990 Nov; 96(1):115-20. PubMed ID: 2265748 [TBL] [Abstract][Full Text] [Related]
30. Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells. Yu H; Chu L; Misra TK J Bacteriol; 1996 May; 178(9):2712-4. PubMed ID: 8626343 [TBL] [Abstract][Full Text] [Related]
31. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. Martin RG; Jair KW; Wolf RE; Rosner JL J Bacteriol; 1996 Apr; 178(8):2216-23. PubMed ID: 8636021 [TBL] [Abstract][Full Text] [Related]
32. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. Lomovskaya O; Lewis K; Matin A J Bacteriol; 1995 May; 177(9):2328-34. PubMed ID: 7730261 [TBL] [Abstract][Full Text] [Related]
33. Sequence and expression of the Escherichia coli K1 neuC gene product. Zapata G; Crowley JM; Vann WF J Bacteriol; 1992 Jan; 174(1):315-9. PubMed ID: 1729218 [TBL] [Abstract][Full Text] [Related]
34. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. Mills SD; Jasalavich CA; Cooksey DA J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873 [TBL] [Abstract][Full Text] [Related]
35. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. Helmann JD; Wang Y; Mahler I; Walsh CT J Bacteriol; 1989 Jan; 171(1):222-9. PubMed ID: 2492496 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the gua operon of Escherichia coli by the DnaA protein. Tesfa-Selase F; Drabble WT Mol Gen Genet; 1992 Jan; 231(2):256-64. PubMed ID: 1736096 [TBL] [Abstract][Full Text] [Related]
37. IS30 activation of an smp'-lacZ gene fusion in Escherichia coli. Neuwald AF; Stauffer GV FEMS Microbiol Lett; 1990 Mar; 56(1-2):13-7. PubMed ID: 2158922 [TBL] [Abstract][Full Text] [Related]
38. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Patzer SI; Hantke K Mol Microbiol; 1998 Jun; 28(6):1199-210. PubMed ID: 9680209 [TBL] [Abstract][Full Text] [Related]
39. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. Condee CW; Summers AO J Bacteriol; 1992 Dec; 174(24):8094-101. PubMed ID: 1334070 [TBL] [Abstract][Full Text] [Related]
40. Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli. Hellmuth K; Rex G; Surin B; Zinck R; McCarthy JE Mol Microbiol; 1991 Apr; 5(4):813-24. PubMed ID: 1830358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]