BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26918860)

  • 21. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana.
    Roach T; Krieger-Liszkay A
    Biochim Biophys Acta; 2012 Dec; 1817(12):2158-65. PubMed ID: 23000078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress.
    Sperdouli I; Moustakas M
    J Plant Physiol; 2012 Apr; 169(6):577-85. PubMed ID: 22305050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions.
    Chen YE; Ma J; Wu N; Su YQ; Zhang ZW; Yuan M; Zhang HY; Zeng XY; Yuan S
    Plant Physiol Biochem; 2018 Sep; 130():267-276. PubMed ID: 30032070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana.
    Lu Y; Hall DA; Last RL
    Plant Cell; 2011 May; 23(5):1861-75. PubMed ID: 21586683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae.
    Havaux M; Dall'osto L; Bassi R
    Plant Physiol; 2007 Dec; 145(4):1506-20. PubMed ID: 17932304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants.
    García-Cerdán JG; Kovács L; Tóth T; Kereïche S; Aseeva E; Boekema EJ; Mamedov F; Funk C; Schröder WP
    Plant J; 2011 Feb; 65(3):368-81. PubMed ID: 21265891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High light stimulates Deg1-dependent cleavage of the minor LHCII antenna proteins CP26 and CP29 and the PsbS protein in Arabidopsis thaliana.
    Zienkiewicz M; Ferenc A; Wasilewska W; Romanowska E
    Planta; 2012 Feb; 235(2):279-88. PubMed ID: 21877139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-harvesting superstructures of green plant chloroplasts lacking photosystems.
    Belgio E; Ungerer P; Ruban AV
    Plant Cell Environ; 2015 Oct; 38(10):2035-47. PubMed ID: 25737144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light.
    Mekala NR; Suorsa M; Rantala M; Aro EM; Tikkanen M
    Plant Physiol; 2015 Jun; 168(2):721-34. PubMed ID: 25902812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency.
    Saito A; Iino T; Sonoike K; Miwa E; Higuchi K
    Plant Cell Physiol; 2010 Dec; 51(12):2013-30. PubMed ID: 20980268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I.
    Grieco M; Suorsa M; Jajoo A; Tikkanen M; Aro EM
    Biochim Biophys Acta; 2015; 1847(6-7):607-19. PubMed ID: 25843550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis.
    Samol I; Shapiguzov A; Ingelsson B; Fucile G; Crèvecoeur M; Vener AV; Rochaix JD; Goldschmidt-Clermont M
    Plant Cell; 2012 Jun; 24(6):2596-609. PubMed ID: 22706287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant.
    Tian F; Gong J; Zhang J; Zhang M; Wang G; Li A; Wang W
    J Exp Bot; 2013 Apr; 64(6):1509-20. PubMed ID: 23378376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts.
    Kereïche S; Kiss AZ; Kouril R; Boekema EJ; Horton P
    FEBS Lett; 2010 Feb; 584(4):759-64. PubMed ID: 20035752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc).
    Kang Z; Li G; Huang J; Niu X; Zou H; Zang G; Wenwen Y; Wang G
    Plant Physiol Biochem; 2012 Nov; 60():81-7. PubMed ID: 22922107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems.
    Ware MA; Giovagnetti V; Belgio E; Ruban AV
    J Photochem Photobiol B; 2015 Nov; 152(Pt B):301-7. PubMed ID: 26233261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana.
    Chen KM; Holmström M; Raksajit W; Suorsa M; Piippo M; Aro EM
    BMC Plant Biol; 2010 Mar; 10():43. PubMed ID: 20205940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MPH1 is a thylakoid membrane protein involved in protecting photosystem II from photodamage in land plants.
    Liu J; Last RL
    Plant Signal Behav; 2015; 10(10):e1076602. PubMed ID: 26337456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching.
    Breitholtz HL; Srivastava R; Tyystjärvi E; Rintamäki E
    Photosynth Res; 2005 Jun; 84(1-3):217-23. PubMed ID: 16049777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.