These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26918905)

  • 21. Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, Papilio xuthus.
    Kinoshita M; Shimohigasshi M; Tominaga Y; Arikawa K; Homberg U
    J Comp Neurol; 2015 Jan; 523(1):162-82. PubMed ID: 25209173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environment- and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens.
    Groh C; Ahrens D; Rossler W
    Brain Behav Evol; 2006; 68(1):1-14. PubMed ID: 16557021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.
    Vogt RG; Große-Wilde E; Zhou JJ
    Insect Biochem Mol Biol; 2015 Jul; 62():142-53. PubMed ID: 25784631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene.
    Harpel D; Cullen DA; Ott SR; Jiggins CD; Walters JR
    Insect Biochem Mol Biol; 2015 Aug; 63():7-13. PubMed ID: 25958827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delayed axonal pruning in the ant brain: a study of developmental trajectories.
    Seid MA; Wehner R
    Dev Neurobiol; 2009 May; 69(6):350-64. PubMed ID: 19263416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insect brain plasticity: effects of olfactory input on neuropil size.
    Eriksson M; Nylin S; Carlsson MA
    R Soc Open Sci; 2019 Aug; 6(8):190875. PubMed ID: 31598254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative morphology of central neuropils in the brain of arthropods and its evolutionary and functional implications.
    Loesel R
    Acta Biol Hung; 2004; 55(1-4):39-51. PubMed ID: 15270217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural plasticity of olfactory neuropils in relation to insect diapause.
    Eriksson M; Janz N; Nylin S; Carlsson MA
    Ecol Evol; 2020 Dec; 10(24):14423-14434. PubMed ID: 33391725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies.
    Merrill RM; Naisbit RE; Mallet J; Jiggins CD
    J Evol Biol; 2013 Sep; 26(9):1959-67. PubMed ID: 23961921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional average-shape atlas of the honeybee brain and its applications.
    Brandt R; Rohlfing T; Rybak J; Krofczik S; Maye A; Westerhoff M; Hege HC; Menzel R
    J Comp Neurol; 2005 Nov; 492(1):1-19. PubMed ID: 16175557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heliconiini butterflies can learn time-dependent reward associations.
    Toure MW; Young FJ; McMillan WO; Montgomery SH
    Biol Lett; 2020 Sep; 16(9):20200424. PubMed ID: 32961092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age, sex, and dominance-related mushroom body plasticity in the paperwasp Mischocyttarus mastigophorus.
    Molina Y; O'Donnell S
    Dev Neurobiol; 2008 Jun; 68(7):950-9. PubMed ID: 18361403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synapsin-based approaches to brain plasticity in adult social insects.
    Fahrbach SE; Van Nest BN
    Curr Opin Insect Sci; 2016 Dec; 18():27-34. PubMed ID: 27939707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication.
    Bybee SM; Yuan F; Ramstetter MD; Llorente-Bousquets J; Reed RD; Osorio D; Briscoe AD
    Am Nat; 2012 Jan; 179(1):38-51. PubMed ID: 22173459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experience-dependent mushroom body plasticity in butterflies: consequences of search complexity and host range.
    van Dijk LJA; Janz N; Schäpers A; Gamberale-Stille G; Carlsson MA
    Proc Biol Sci; 2017 Nov; 284(1866):. PubMed ID: 29093221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linking ecological specialisation to adaptations in butterfly brains and sensory systems.
    Couto A; Wainwright JB; Morris BJ; Montgomery SH
    Curr Opin Insect Sci; 2020 Dec; 42():55-60. PubMed ID: 32979531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae).
    Van Zandt Brower A
    Mol Phylogenet Evol; 1994 Jun; 3(2):159-74. PubMed ID: 8075834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experience, but not age, is associated with volumetric mushroom body expansion in solitary alkali bees.
    Hagadorn MA; Johnson MM; Smith AR; Seid MA; Kapheim KM
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33602679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic analysis of neural projections reveals clonal composition of the Drosophila brain.
    Ito M; Masuda N; Shinomiya K; Endo K; Ito K
    Curr Biol; 2013 Apr; 23(8):644-55. PubMed ID: 23541729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.