These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26918994)

  • 1. Dynamic Leidenfrost Effect: Relevant Time and Length Scales.
    Shirota M; van Limbeek MA; Sun C; Prosperetti A; Lohse D
    Phys Rev Lett; 2016 Feb; 116(6):064501. PubMed ID: 26918994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect.
    Dodd LE; Wood D; Geraldi NR; Wells GG; McHale G; Xu BB; Stuart-Cole S; Martin J; Newton MI
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22658-63. PubMed ID: 27482833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions.
    Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L
    Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamics of Leidenfrost droplets in one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length scale of Leidenfrost ratchet switches droplet directionality.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    Nanoscale; 2014 Aug; 6(15):9293-9. PubMed ID: 24986190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fingering patterns during droplet impact on heated surfaces.
    Khavari M; Sun C; Lohse D; Tran T
    Soft Matter; 2015 May; 11(17):3298-303. PubMed ID: 25793227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermo-wetting instability driving Leidenfrost film collapse.
    Zhao TY; Patankar NA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13321-13328. PubMed ID: 32461357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Final fate of a Leidenfrost droplet: Explosion or takeoff.
    Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C
    Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of the Leidenfrost effect via low frequency vibrations.
    Ng BT; Hung YM; Tan MK
    Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leidenfrost Effect as a Directed Percolation Phase Transition.
    Chantelot P; Lohse D
    Phys Rev Lett; 2021 Sep; 127(12):124502. PubMed ID: 34597096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.
    Lee DW; Jin MH; Lee YJ; Park JH; Lee CB; Park JS
    Sci Rep; 2016 May; 6():26474. PubMed ID: 27198855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leidenfrost point reduction on micropatterned metallic surfaces.
    del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ
    Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High jump of impinged droplets before Leidenfrost state.
    Qiu L; Dubey S; Choo FH; Duan F
    Phys Rev E; 2019 Mar; 99(3-1):033106. PubMed ID: 30999492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature.
    Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L
    ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leidenfrost droplet trampolining.
    Graeber G; Regulagadda K; Hodel P; Küttel C; Landolf D; Schutzius TM; Poulikakos D
    Nat Commun; 2021 Mar; 12(1):1727. PubMed ID: 33741968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric wettability of nanostructures directs leidenfrost droplets.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    ACS Nano; 2014 Jan; 8(1):860-7. PubMed ID: 24298880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.