These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26919069)

  • 1. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of turbulence models for pulsatile flow inside a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):271-285. PubMed ID: 25816074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood.
    Khanafer KM; Gadhoke P; Berguer R; Bull JL
    Biorheology; 2006; 43(5):661-79. PubMed ID: 17047283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device.
    Mann KA; Deutsch S; Tarbell JM; Geselowitz DB; Rosenberg G; Pierce WS
    J Biomech Eng; 1987 May; 109(2):139-47. PubMed ID: 3599939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step.
    Choi HW; Barakat AI
    Biorheology; 2005; 42(6):493-509. PubMed ID: 16369086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-slip Mesh Update Method: implementation and applications.
    Behr M; Arora D
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):113-23. PubMed ID: 12745425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava.
    Aycock KI; Campbell RL; Lynch FC; Manning KB; Craven BA
    Ann Biomed Eng; 2016 Dec; 44(12):3568-3582. PubMed ID: 27272211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study.
    Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluid dynamics study in a 50 cc pulsatile ventricular assist device: influence of heart rate variability.
    Nanna JC; Navitsky MA; Topper SR; Deutsch S; Manning KB
    J Biomech Eng; 2011 Oct; 133(10):101002. PubMed ID: 22070327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle.
    Baldwin JT; Deutsch S; Geselowitz DB; Tarbell JM
    J Biomech Eng; 1994 May; 116(2):190-200. PubMed ID: 8078326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm.
    Cavazzuti M; Atherton MA; Collins MW; Barozzi GS
    Proc Inst Mech Eng H; 2011 Jun; 225(6):597-609. PubMed ID: 22034743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.