These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26919202)

  • 1. Chiral Nanozymes-Gold Nanoparticle-Based Transphosphorylation Catalysts Capable of Enantiomeric Discrimination.
    Chen JL; Pezzato C; Scrimin P; Prins LJ
    Chemistry; 2016 May; 22(21):7028-32. PubMed ID: 26919202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control.
    Diez-Castellnou M; Mancin F; Scrimin P
    J Am Chem Soc; 2014 Jan; 136(4):1158-61. PubMed ID: 24405094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors Influencing the Activity of Nanozymes in the Cleavage of an RNA Model Substrate.
    Czescik J; Zamolo S; Darbre T; Mancin F; Scrimin P
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31374998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in chiral nanozymes: a review.
    Zhang R; Zhou Y; Yan X; Fan K
    Mikrochim Acta; 2019 Nov; 186(12):782. PubMed ID: 31729634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanism of Cleavage of RNA Phosphodiesters by a Gold Nanoparticle Nanozyme.
    Czescik J; Mancin F; Strömberg R; Scrimin P
    Chemistry; 2021 Jun; 27(31):8143-8148. PubMed ID: 33780067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts.
    Manea F; Houillon FB; Pasquato L; Scrimin P
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6165-9. PubMed ID: 15549744
    [No Abstract]   [Full Text] [Related]  

  • 8. Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach.
    Krüger C; Agarwal S; Greiner A
    J Am Chem Soc; 2008 Mar; 130(9):2710-1. PubMed ID: 18254626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution.
    Jadzinsky PD; Calero G; Ackerson CJ; Bushnell DA; Kornberg RD
    Science; 2007 Oct; 318(5849):430-3. PubMed ID: 17947577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy.
    Crew E; Yan H; Lin L; Yin J; Skeete Z; Kotlyar T; Tchah N; Lee J; Bellavia M; Goodshaw I; Joseph P; Luo J; Gal S; Zhong CJ
    Analyst; 2013 Sep; 138(17):4941-9. PubMed ID: 23799231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic signal amplification for the discrimination of ATP and ADP using functionalised gold nanoparticles.
    Pezzato C; Chen JL; Galzerano P; Salvi M; Prins LJ
    Org Biomol Chem; 2016 Jul; 14(28):6811-20. PubMed ID: 27336846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Supra-Assembly of a DNA Surface Adapter for Tunable Chiral Directional Self-Assembly of Gold Nanorods.
    Lan X; Su Z; Zhou Y; Meyer T; Ke Y; Wang Q; Chiu W; Liu N; Zou S; Yan H; Liu Y
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14632-14636. PubMed ID: 28971555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing chiral interfaces by infrared spectroscopic methods.
    Bieri M; Gautier C; Bürgi T
    Phys Chem Chem Phys; 2007 Feb; 9(6):671-85. PubMed ID: 17268678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions.
    Gross E; Liu JH; Alayoglu S; Marcus MA; Fakra SC; Toste FD; Somorjai GA
    J Am Chem Soc; 2013 Mar; 135(10):3881-6. PubMed ID: 23406377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles.
    Mancin F; Prins LJ; Pengo P; Pasquato L; Tecilla P; Scrimin P
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27527134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.
    Lee HE; Ahn HY; Mun J; Lee YY; Kim M; Cho NH; Chang K; Kim WS; Rho J; Nam KT
    Nature; 2018 Apr; 556(7701):360-365. PubMed ID: 29670265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals.
    Wang Y; Zeiri O; Meshi L; Stellacci F; Weinstock IA
    Chem Commun (Camb); 2012 Oct; 48(78):9765-7. PubMed ID: 22918232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A superhydrophobic layer formed by fluoro-derivative-treated gold sheets on grown-up zinc oxide nanoparticles for a spherical DNA hydrogel.
    Bae SJ; Song H; Jung GY; Cho SW; Bae JW; Um SH
    Colloids Surf B Biointerfaces; 2013 Nov; 111():342-5. PubMed ID: 23838202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies.
    Wen Y; McLaughlin CK; Lo PK; Yang H; Sleiman HF
    Bioconjug Chem; 2010 Aug; 21(8):1413-6. PubMed ID: 20666441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on au(111).
    Yan J; Ouyang R; Jensen PS; Ascic E; Tanner D; Mao B; Zhang J; Tang C; Hush NS; Ulstrup J; Reimers JR
    J Am Chem Soc; 2014 Dec; 136(49):17087-94. PubMed ID: 25407476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.