These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 26919444)
1. Evaluation of loading characteristics and IgG binding performance of Staphylococcal protein A on polypropylene capillary-channeled polymer fibers. Trang HK; Schadock-Hewitt AJ; Jiang L; Marcus RK J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1015-1016():92-104. PubMed ID: 26919444 [TBL] [Abstract][Full Text] [Related]
2. Application of protein A-modified capillary-channeled polymer polypropylene fibers to the quantitation of IgG in complex matrices. Trang HK; Marcus RK J Pharm Biomed Anal; 2017 Aug; 142():49-58. PubMed ID: 28494339 [TBL] [Abstract][Full Text] [Related]
3. Initial evaluation of protein A modified capillary-channeled polymer fibers for the capture and recovery of immunoglobulin G. Schadock-Hewitt AJ; Marcus RK J Sep Sci; 2014 Mar; 37(5):495-504. PubMed ID: 24376153 [TBL] [Abstract][Full Text] [Related]
4. Loading characteristics and chemical stability of headgroup-functionalized poly(ethylene glycol)-lipid ligand tethers on polypropylene capillary-channeled polymer fibers. Schadock-Hewitt AJ; Marcus RK J Sep Sci; 2014 Dec; 37(24):3595-602. PubMed ID: 25284707 [TBL] [Abstract][Full Text] [Related]
6. Loading characteristics of streptavidin on polypropylene capillary channeled polymer fibers and capture performance towards biotinylated proteins. Islam MKB; Kenneth Marcus R Anal Bioanal Chem; 2023 Nov; 415(27):6711-6721. PubMed ID: 37740120 [TBL] [Abstract][Full Text] [Related]
7. Roles of interstitial fraction and load conditions on the dynamic binding capacity of proteins on capillary-channeled polymer fiber columns. Wang Z; Marcus RK Biotechnol Prog; 2015; 31(1):97-109. PubMed ID: 25378292 [TBL] [Abstract][Full Text] [Related]
8. Small molecule adsorption on to polyester capillary-channeled polymer fibers: frontal analysis of naphthalene and naphthol (naphthalene and naphthol adsorption on capillary-channeled polymer fibers). Straut CM; Marcus RK J Sep Sci; 2010 Jan; 33(1):46-60. PubMed ID: 20091715 [TBL] [Abstract][Full Text] [Related]
9. Initial evaluation of protein throughput and yield characteristics on nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases by frontal analysis. Randunu KM; Marcus RK Biotechnol Prog; 2013; 29(5):1222-9. PubMed ID: 23804494 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of synthesized lipid tethered ligands for surface functionalization of polypropylene capillary-channeled polymer fiber stationary phases. Jiang L; Schadock-Hewitt AJ; Zhang LX; Marcus RK Analyst; 2015 Mar; 140(5):1523-34. PubMed ID: 25619845 [TBL] [Abstract][Full Text] [Related]
11. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column. Nelson DM; Marcus RK Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840 [TBL] [Abstract][Full Text] [Related]
12. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers II. Pressure-flow curves and optimization for capture. Perez-Almodovar EX; Carta G J Chromatogr A; 2009 Nov; 1216(47):8348-54. PubMed ID: 19786279 [TBL] [Abstract][Full Text] [Related]
13. Dynamic evaluation of polypropylene capillary-channeled fibers as a stationary phase in high-performance liquid chromatography. Randunu KM; Dimartino S; Marcus RK J Sep Sci; 2012 Dec; 35(23):3270-80. PubMed ID: 23109248 [TBL] [Abstract][Full Text] [Related]
14. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers. I. Adsorption equilibrium and kinetics. Perez-Almodovar EX; Carta G J Chromatogr A; 2009 Nov; 1216(47):8339-47. PubMed ID: 19783254 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of trilobal capillary-channeled polymer fiber columns with superficially porous and monolithic phases toward reversed-phase protein separations. Billotto LS; Marcus RK J Sep Sci; 2022 Oct; 45(20):3811-3826. PubMed ID: 35986632 [TBL] [Abstract][Full Text] [Related]
16. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles. Grimes BA; Liapis AI J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509 [TBL] [Abstract][Full Text] [Related]
17. Direct Affinity Ligand Immobilization onto Bare Iron Oxide Nanoparticles Enables Efficient Magnetic Separation of Antibodies. Zimmermann I; Kaveh-Baghbaderani Y; Eilts F; Kohn N; Fraga-García P; Berensmeier S ACS Appl Bio Mater; 2024 Jun; 7(6):3942-3952. PubMed ID: 38740514 [TBL] [Abstract][Full Text] [Related]
18. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography. Stanelle RD; Sander LC; Marcus RK J Chromatogr A; 2005 Dec; 1100(1):68-75. PubMed ID: 16194542 [TBL] [Abstract][Full Text] [Related]
19. Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. Wang Y; Zhang X; Han N; Wu Y; Wei D Int J Biol Macromol; 2018 Dec; 120(Pt A):100-108. PubMed ID: 30121300 [TBL] [Abstract][Full Text] [Related]
20. Solid phase extraction of proteins from buffer solutions employing capillary-channeled polymer (C-CP) fibers as the stationary phase. Burdette CQ; Marcus RK Analyst; 2013 Feb; 138(4):1098-106. PubMed ID: 23223274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]