These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26919564)

  • 1. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design.
    Bark DL; Yousefi A; Forleo M; Vaesken A; Heim F; Dasi LP
    J Mech Behav Biomed Mater; 2016 Jul; 60():280-287. PubMed ID: 26919564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro characterization of self-expandable textile transcatheter aortic valves.
    Hatoum H; Girault E; Heim F; Dasi LP
    J Mech Behav Biomed Mater; 2020 Mar; 103():103559. PubMed ID: 31786509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices.
    Hatoum H; Heim F; Dasi LP
    J Mech Behav Biomed Mater; 2018 Oct; 86():232-239. PubMed ID: 29986298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heart rate on the hemodynamics of bileaflet mechanical heart valves' prostheses (St. Jude Medical) in the aortic position and in the opening phase: A computational study.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2016 Mar; 230(3):175-90. PubMed ID: 26786673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Investigation of the Hemodynamics of Transcatheter Heterotopic Valves Implantation in the Cavo-Atrial Junction.
    Ismail M; Kabinejadian F; Nguyen YN; Tay E; Kim S; Leo HL
    Artif Organs; 2015 Sep; 39(9):803-14. PubMed ID: 25920812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of superhydrophobicity on the fluid dynamics of a bileaflet mechanical heart valve.
    Hatoum H; Vallabhuneni S; Kota AK; Bark DL; Popat KC; Dasi LP
    J Mech Behav Biomed Mater; 2020 Oct; 110():103895. PubMed ID: 32957201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady flow dynamics of prosthetic aortic heart valves: a comparative evaluation with PIV techniques.
    Lim WL; Chew YT; Chew TC; Low HT
    J Biomech; 1998 May; 31(5):411-21. PubMed ID: 9727338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Development of Novel Transcatheter Bicaval Valves in the Interventional Treatment of Tricuspid Regurgitation.
    Ismail M; Kabinejadian F; Nguyen YN; Tay ELW; Leo HL
    Artif Organs; 2018 Feb; 42(2):E13-E28. PubMed ID: 28891078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Arched Leaflets and Stent Profile on the Hemodynamics of Tri-Leaflet Flexible Polymeric Heart Valves.
    Yousefi A; Bark DL; Dasi LP
    Ann Biomed Eng; 2017 Feb; 45(2):464-475. PubMed ID: 27307007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic assessment of extra-cardiac tricuspid valves using particle image velocimetry.
    Ismail M; Kabinejadian F; Nguyen YN; Tay Lik Wui E; Kim S; Leo HL
    Med Eng Phys; 2017 Dec; 50():1-11. PubMed ID: 29102273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of the leaflets' curvature on the flow field in two bileaflet prosthetic heart valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Biomech; 2001 May; 34(5):613-21. PubMed ID: 11311702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Assessment of Flow Fields Associated with Heart Valve Prostheses Using Particle Image Velocimetry (PIV): Recommendations for Best Practices.
    Raghav V; Sastry S; Saikrishnan N
    Cardiovasc Eng Technol; 2018 Sep; 9(3):273-287. PubMed ID: 29532332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of the shear stress induced in the leakage backflow produced by four types of heart valve prostheses.
    Haggag YA
    Proc Inst Mech Eng H; 1990; 204(2):111-4. PubMed ID: 2095141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro pulsatile flow hemodynamics of five mechanical aortic heart valve prostheses.
    Walker PG; Yoganathan AP
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S113-23. PubMed ID: 1389270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental analysis of pulsatile flow characteristics in prosthetic aortic valve models with stenosis.
    Zhang R; Zhang Y
    Med Eng Phys; 2020 May; 79():10-18. PubMed ID: 32205024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.