BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26919984)

  • 21. Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags.
    Panda D; Dehury B; Sahu J; Barooah M; Sen P; Modi MK
    Gene; 2014 Mar; 537(2):333-42. PubMed ID: 24434367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterization of microRNAs from rice.
    Sunkar R; Girke T; Jain PK; Zhu JK
    Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing.
    Wei R; Qiu D; Wilson IW; Zhao H; Lu S; Miao J; Feng S; Bai L; Wu Q; Tu D; Ma X; Tang Q
    BMC Genomics; 2015 Oct; 16():835. PubMed ID: 26490136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinformatics Study of Structural Patterns in Plant MicroRNA Precursors.
    Miskiewicz J; Tomczyk K; Mickiewicz A; Sarzynska J; Szachniuk M
    Biomed Res Int; 2017; 2017():6783010. PubMed ID: 28280737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome identification in oil palm (Elaeis guineensis) using in situ hybridization with massive pools of single copy oligonucleotides and transferability across Arecaceae species.
    Zaki NM; Schwarzacher T; Singh R; Madon M; Wischmeyer C; Hanim Mohd Nor N; Zulkifli MA; Heslop-Harrison JSP
    Chromosome Res; 2021 Dec; 29(3-4):373-390. PubMed ID: 34657216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of microRNAs involved in the Phosphate starvation response in Oil Palm (Elaeis guineensis Jacq.).
    Saputra TI; Roberdi ; Maryanto SD; Tanjung ZA; Utomo C; Liwang T
    Mol Biol Rep; 2023 Jul; 50(7):5609-5620. PubMed ID: 37171552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the highly accumulated microRNA*s in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa).
    Shao C; Ma X; Xu X; Meng Y
    Gene; 2013 Feb; 515(1):123-7. PubMed ID: 23201415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants.
    Gharat SA; Shaw BP
    BMC Plant Biol; 2015 Dec; 15():301. PubMed ID: 26714456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational prediction and experimental verification of miRNAs in Panicum miliaceum L.
    Wu Y; Du J; Wang X; Fang X; Shan W; Liang Z
    Sci China Life Sci; 2012 Sep; 55(9):807-17. PubMed ID: 23015130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets.
    Prakash P; Ghosliya D; Gupta V
    Gene; 2015 Jan; 554(2):181-95. PubMed ID: 25445288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of microRNA genes and their mRNA targets in Festuca arundinacea.
    Sun XH; Zhao LP; Zou Q; Wang ZB
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3875-87. PubMed ID: 24577674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs.
    Wang Y; Hindemitt T; Mayer KF
    Bioinformatics; 2006 Nov; 22(21):2585-9. PubMed ID: 16901935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures.
    Nithin C; Patwa N; Thomas A; Bahadur RP; Basak J
    BMC Plant Biol; 2015 Jun; 15():140. PubMed ID: 26067253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.
    Somyong S; Poopear S; Sunner SK; Wanlayaporn K; Jomchai N; Yoocha T; Ukoskit K; Tangphatsornruang S; Tragoonrung S
    Mol Genet Genomics; 2016 Jun; 291(3):1243-57. PubMed ID: 26897377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes.
    Hsu PW; Huang HD; Hsu SD; Lin LZ; Tsou AP; Tseng CP; Stadler PF; Washietl S; Hofacker IL
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D135-9. PubMed ID: 16381831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm.
    Rosli R; Amiruddin N; Ab Halim MA; Chan PL; Chan KL; Azizi N; Morris PE; Leslie Low ET; Ong-Abdullah M; Sambanthamurthi R; Singh R; Murphy DJ
    PLoS One; 2018; 13(4):e0194792. PubMed ID: 29672525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus).
    Yusuf NH; Ong WD; Redwan RM; Latip MA; Kumar SV
    Gene; 2015 Oct; 571(1):71-80. PubMed ID: 26115767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational prediction of miRNAs in Arabidopsis thaliana.
    Adai A; Johnson C; Mlotshwa S; Archer-Evans S; Manocha V; Vance V; Sundaresan V
    Genome Res; 2005 Jan; 15(1):78-91. PubMed ID: 15632092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational identification and analysis of novel sugarcane microRNAs.
    Thiebaut F; Grativol C; Carnavale-Bottino M; Rojas CA; Tanurdzic M; Farinelli L; Martienssen RA; Hemerly AS; Ferreira PC
    BMC Genomics; 2012 Jul; 13():290. PubMed ID: 22747909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.