These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 26920323)
1. Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II--Model systems. Grainger MN; Manley-Harris M; Lane JR; Field RJ Food Chem; 2016 Jul; 202():492-9. PubMed ID: 26920323 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III--A model to simulate the conversion. Grainger MN; Manley-Harris M; Lane JR; Field RJ Food Chem; 2016 Jul; 202():500-6. PubMed ID: 26920324 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems. Grainger MN; Manley-Harris M; Lane JR; Field RJ Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322 [TBL] [Abstract][Full Text] [Related]
4. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof. Grainger MN; Manley-Harris M; Fauzi NA; Farid MM Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711 [TBL] [Abstract][Full Text] [Related]
5. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Atrott J; Haberlau S; Henle T Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208 [TBL] [Abstract][Full Text] [Related]
6. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey. Hellwig M; Rückriemen J; Sandner D; Henle T J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part IV - Formation of HMF. Grainger MNC; Owens A; Manley-Harris M; Lane JR; Field RJ Food Chem; 2017 Oct; 232():648-655. PubMed ID: 28490123 [TBL] [Abstract][Full Text] [Related]
8. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Rückriemen J; Klemm O; Henle T Food Chem; 2017 Sep; 230():540-546. PubMed ID: 28407946 [TBL] [Abstract][Full Text] [Related]
9. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Adams CJ; Manley-Harris M; Molan PC Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902 [TBL] [Abstract][Full Text] [Related]
10. Dihydroxyacetone Production in the Nectar of Australian Leptospermum Is Species Dependent. Williams SD; Pappalardo L; Bishop J; Brooks PR J Agric Food Chem; 2018 Oct; 66(42):11133-11140. PubMed ID: 30289260 [TBL] [Abstract][Full Text] [Related]
11. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium). Rückriemen J; Schwarzenbolz U; Adam S; Henle T J Agric Food Chem; 2015 Sep; 63(38):8488-92. PubMed ID: 26365614 [TBL] [Abstract][Full Text] [Related]
12. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels. Cokcetin NN; Pappalardo M; Campbell LT; Brooks P; Carter DA; Blair SE; Harry EJ PLoS One; 2016; 11(12):e0167780. PubMed ID: 28030589 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part V - The rate determining step. Owens A; Lane JR; Manley-Harris M; Marie Jensen A; Jørgensen S Food Chem; 2019 Mar; 276():636-642. PubMed ID: 30409643 [TBL] [Abstract][Full Text] [Related]
14. Methylglyoxal binds to amines in honey matrix and 2'-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey. Kato Y; Kishi Y; Okano Y; Kawai M; Shimizu M; Suga N; Yakemoto C; Kato M; Nagata A; Miyoshi N Food Chem; 2021 Feb; 337():127789. PubMed ID: 32795863 [TBL] [Abstract][Full Text] [Related]
15. Investigation of Temporal Apparent C4 Sugar Change in Manuka Honey. Chernyshev A; Braggins T J Agric Food Chem; 2020 Apr; 68(14):4261-4267. PubMed ID: 32159341 [TBL] [Abstract][Full Text] [Related]
16. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Spiteri M; Rogers KM; Jamin E; Thomas F; Guyader S; Lees M; Rutledge DN Food Chem; 2017 Feb; 217():766-772. PubMed ID: 27664696 [TBL] [Abstract][Full Text] [Related]
17. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey. Thierig M; Siegel E; Henle T J Agric Food Chem; 2023 Oct; 71(41):15261-15269. PubMed ID: 37796058 [TBL] [Abstract][Full Text] [Related]
18. Monitoring the Release of Methylglyoxal (MGO) from Honey and Honey-Based Formulations. Hossain ML; Lim LY; Hammer K; Hettiarachchi D; Locher C Molecules; 2023 Mar; 28(6):. PubMed ID: 36985830 [TBL] [Abstract][Full Text] [Related]
20. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. Green KJ; Lawag IL; Locher C; Hammer KA PLoS One; 2022; 17(7):e0272376. PubMed ID: 35901185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]