These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 26920804)
1. Improvement in detection of minor alleles in next generation sequencing by base quality recalibration. Ni S; Stoneking M BMC Genomics; 2016 Feb; 17():139. PubMed ID: 26920804 [TBL] [Abstract][Full Text] [Related]
2. SNP calling by sequencing pooled samples. Raineri E; Ferretti L; Esteve-Codina A; Nevado B; Heath S; Pérez-Enciso M BMC Bioinformatics; 2012 Sep; 13():239. PubMed ID: 22992255 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of mitochondrial DNA heteroplasmy detection using Next Generation Sequencing. González MDM; Ramos A; Aluja MP; Santos C Mitochondrion; 2020 Jan; 50():88-93. PubMed ID: 31669622 [TBL] [Abstract][Full Text] [Related]
4. High-specificity detection of rare alleles with Paired-End Low Error Sequencing (PELE-Seq). Preston JL; Royall AE; Randel MA; Sikkink KL; Phillips PC; Johnson EA BMC Genomics; 2016 Jun; 17():464. PubMed ID: 27301885 [TBL] [Abstract][Full Text] [Related]
5. Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing. Zook JM; Samarov D; McDaniel J; Sen SK; Salit M PLoS One; 2012; 7(7):e41356. PubMed ID: 22859977 [TBL] [Abstract][Full Text] [Related]
6. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies. Liao P; Satten GA; Hu YJ Genet Epidemiol; 2017 Jul; 41(5):375-387. PubMed ID: 28560825 [TBL] [Abstract][Full Text] [Related]
7. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Li M; Schönberg A; Schaefer M; Schroeder R; Nasidze I; Stoneking M Am J Hum Genet; 2010 Aug; 87(2):237-49. PubMed ID: 20696290 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive Mitochondrial Genome Analysis by Massively Parallel Sequencing. Palculict ME; Zhang VW; Wong LJ; Wang J Methods Mol Biol; 2016; 1351():3-17. PubMed ID: 26530670 [TBL] [Abstract][Full Text] [Related]
9. Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. Kobayashi M; Ohyanagi H; Takanashi H; Asano S; Kudo T; Kajiya-Kanegae H; Nagano AJ; Tainaka H; Tokunaga T; Sazuka T; Iwata H; Tsutsumi N; Yano K DNA Res; 2017 Aug; 24(4):397-405. PubMed ID: 28498906 [TBL] [Abstract][Full Text] [Related]
10. Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs. Friis SL; Buchard A; Rockenbauer E; Børsting C; Morling N Forensic Sci Int Genet; 2016 Mar; 21():68-75. PubMed ID: 26722765 [TBL] [Abstract][Full Text] [Related]
11. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. Kloss-Brandstätter A; Weissensteiner H; Erhart G; Schäfer G; Forer L; Schönherr S; Pacher D; Seifarth C; Stöckl A; Fendt L; Sottsas I; Klocker H; Huck CW; Rasse M; Kronenberg F; Kloss FR PLoS One; 2015; 10(8):e0135643. PubMed ID: 26262956 [TBL] [Abstract][Full Text] [Related]
12. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken. Ni G; Strom TM; Pausch H; Reimer C; Preisinger R; Simianer H; Erbe M BMC Genomics; 2015 Oct; 16():824. PubMed ID: 26486989 [TBL] [Abstract][Full Text] [Related]
13. ADEPT, a dynamic next generation sequencing data error-detection program with trimming. Feng S; Lo CC; Li PE; Chain PS BMC Bioinformatics; 2016 Feb; 17():109. PubMed ID: 26928302 [TBL] [Abstract][Full Text] [Related]
14. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. McElhoe JA; Holland MM; Makova KD; Su MS; Paul IM; Baker CH; Faith SA; Young B Forensic Sci Int Genet; 2014 Nov; 13():20-9. PubMed ID: 25051226 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Goto H; Dickins B; Afgan E; Paul IM; Taylor J; Makova KD; Nekrutenko A Genome Biol; 2011; 12(6):R59. PubMed ID: 21699709 [TBL] [Abstract][Full Text] [Related]
16. A unified approach for allele frequency estimation, SNP detection and association studies based on pooled sequencing data using EM algorithms. Chen Q; Sun F BMC Genomics; 2013; 14 Suppl 1(Suppl 1):S1. PubMed ID: 23369070 [TBL] [Abstract][Full Text] [Related]
17. Calling known variants and identifying new variants while rapidly aligning sequence data. VanRaden PM; Bickhart DM; O'Connell JR J Dairy Sci; 2019 Apr; 102(4):3216-3229. PubMed ID: 30772032 [TBL] [Abstract][Full Text] [Related]
18. Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data. Duan M; Chen L; Ge Q; Lu N; Li J; Pan X; Qiao Y; Tu J; Lu Z Gene; 2019 May; 699():145-154. PubMed ID: 30876822 [TBL] [Abstract][Full Text] [Related]
19. MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. Marquis J; Lefebvre G; Kourmpetis YAI; Kassam M; Ronga F; De Marchi U; Wiederkehr A; Descombes P BMC Genomics; 2017 Apr; 18(1):326. PubMed ID: 28441938 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial DNA enrichment reduced NUMT contamination in porcine NGS analyses. Wang D; Xiang H; Ning C; Liu H; Liu JF; Zhao X Brief Bioinform; 2020 Jul; 21(4):1368-1377. PubMed ID: 31204429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]