BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26920877)

  • 1. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?
    Wang Y
    J Microbiol; 2016 Mar; 54(3):170-7. PubMed ID: 26920877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner.
    Glory A; van Oostende CT; Geitmann A; Bachewich C
    Fungal Genet Biol; 2017 Oct; 107():51-66. PubMed ID: 28803909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein.
    Carlisle PL; Kadosh D
    Eukaryot Cell; 2010 Sep; 9(9):1320-8. PubMed ID: 20656912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the
    Mendelsohn S; Pinsky M; Weissman Z; Kornitzer D
    mSphere; 2017; 2(2):. PubMed ID: 28289726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth.
    Zheng XD; Lee RT; Wang YM; Lin QS; Wang Y
    EMBO J; 2007 Aug; 26(16):3760-9. PubMed ID: 17673907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial control of HGC1 expression results in Hgc1 localization to the apical cells of hyphae in Candida albicans.
    Wang A; Lane S; Tian Z; Sharon A; Hazan I; Liu H
    Eukaryot Cell; 2007 Feb; 6(2):253-61. PubMed ID: 17172437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CDKs and the yeast-hyphal decision.
    Wang Y
    Curr Opin Microbiol; 2009 Dec; 12(6):644-9. PubMed ID: 19837628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development.
    Sinha I; Wang YM; Philp R; Li CR; Yap WH; Wang Y
    Dev Cell; 2007 Sep; 13(3):421-32. PubMed ID: 17765684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans.
    Sharma A; Mitchell AP
    G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37405402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
    Wang A; Raniga PP; Lane S; Lu Y; Liu H
    Mol Cell Biol; 2009 Aug; 29(16):4406-16. PubMed ID: 19528234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-talk between Tor1 and Sch9 regulates hyphae-specific genes or ribosomal protein genes in a mutually exclusive manner in Candida albicans.
    Kim SW; Joo YJ; Chun YJ; Park YK; Kim J
    Mol Microbiol; 2019 Sep; 112(3):1041-1057. PubMed ID: 31283060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase.
    Bishop A; Lane R; Beniston R; Chapa-y-Lazo B; Smythe C; Sudbery P
    EMBO J; 2010 Sep; 29(17):2930-42. PubMed ID: 20639857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking Sfl1 Regulation of Hyphal Development to Stress Response Kinases in Candida albicans.
    Unoje O; Yang M; Lu Y; Su C; Liu H
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31941808
    [No Abstract]   [Full Text] [Related]  

  • 15. Hgc1 Independence of Biofilm Hyphae in Candida albicans.
    Sharma A; Solis NV; Huang MY; Lanni F; Filler SG; Mitchell AP
    mBio; 2023 Apr; 14(2):e0349822. PubMed ID: 36779720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Lu Y; Su C; Ray S; Yuan Y; Liu H
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647154
    [No Abstract]   [Full Text] [Related]  

  • 17. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans.
    Min K; Jannace TF; Si H; Veeramah KR; Haley JD; Konopka JB
    PLoS Pathog; 2021 Aug; 17(8):e1009861. PubMed ID: 34398936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.
    Martin R; Moran GP; Jacobsen ID; Heyken A; Domey J; Sullivan DJ; Kurzai O; Hube B
    PLoS One; 2011 Apr; 6(4):e18394. PubMed ID: 21512583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms.
    Banerjee M; Uppuluri P; Zhao XR; Carlisle PL; Vipulanandan G; Villar CC; López-Ribot JL; Kadosh D
    Eukaryot Cell; 2013 Feb; 12(2):224-32. PubMed ID: 23223035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans.
    Fan Y; He H; Dong Y; Pan H
    Mycopathologia; 2013 Dec; 176(5-6):329-35. PubMed ID: 24002103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.