BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26920900)

  • 1. Annual grass invasion in sagebrush steppe: the relative importance of climate, soil properties and biotic interactions.
    Bansal S; Sheley RL
    Oecologia; 2016 Jun; 181(2):543-57. PubMed ID: 26920900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A warmer and drier climate in the northern sagebrush biome does not promote cheatgrass invasion or change its response to fire.
    Larson CD; Lehnhoff EA; Rew LJ
    Oecologia; 2017 Dec; 185(4):763-774. PubMed ID: 29038863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.
    Weber CF; King GM; Aho K
    PLoS One; 2015; 10(1):e0117026. PubMed ID: 25629158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interannual climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion in a semiarid shrubland.
    Mahood AL; Jones RO; Board DI; Balch JK; Chambers JC
    Glob Chang Biol; 2022 Jan; 28(1):267-284. PubMed ID: 34614268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentata)-associated soils.
    Wiber CF; King GM; Aho K
    PLoS One; 2015; 10(3):e0123849. PubMed ID: 25822987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative importance of abiotic, biotic, and disturbance drivers of plant community structure in the sagebrush steppe.
    Mitchell RM; Bakker JD; Vincent JB; Davies GM
    Ecol Appl; 2017 Apr; 27(3):756-768. PubMed ID: 27935663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The invasive annual cheatgrass increases nitrogen availability in 24-year-old replicated field plots.
    Stark JM; Norton JM
    Oecologia; 2015 Mar; 177(3):799-809. PubMed ID: 25304974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.
    Holthuijzen MF; Veblen KE
    PLoS One; 2015; 10(12):e0143170. PubMed ID: 26625156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invasive and native grasses exert negative plant-soil feedbacks on the woody shrub Artemisia tridentata.
    Cowan JA; Grady KC; Dijkstra P; Schwartz E; Gehring CA
    Oecologia; 2022 Aug; 199(4):1007-1019. PubMed ID: 35969273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-scale analysis reveals interacting predictors of annual and perennial cover in Northern Great Basin rangelands.
    Case MF; Davies KW; Boyd CS; Aoyama L; Merson J; Penkauskas C; Hallett LM
    Ecol Appl; 2024 Jun; 34(4):e2953. PubMed ID: 38558271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin.
    Prater MR; Obrist D; Arnone JA; DeLucia EH
    Oecologia; 2006 Jan; 146(4):595-607. PubMed ID: 16151860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between cheatgrass and bluebunch wheatgrass is altered by temperature, resource availability, and atmospheric CO
    Larson CD; Lehnhoff EA; Noffsinger C; Rew LJ
    Oecologia; 2018 Mar; 186(3):855-868. PubMed ID: 29273835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large herbivores influence the composition and diversity of shrub-steppe communities in the Rocky Mountains, USA.
    Manier DJ; Thompson Hobbs N
    Oecologia; 2006 Jan; 146(4):641-51. PubMed ID: 16261376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native perennial grasses show evolutionary response to Bromus tectorum (cheatgrass) invasion.
    Goergen EM; Leger EA; Espeland EK
    PLoS One; 2011 Mar; 6(3):e18145. PubMed ID: 21479185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland.
    Blumenthal DM; Kray JA; Ortmans W; Ziska LH; Pendall E
    Glob Chang Biol; 2016 Sep; 22(9):3026-38. PubMed ID: 27090757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil texture and precipitation seasonality influence plant community structure in North American temperate shrub steppe.
    Renne RR; Bradford JB; Burke IC; Lauenroth WK
    Ecology; 2019 Nov; 100(11):e02824. PubMed ID: 31314928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive effects of native shrubs on Bromus tectorum demography.
    Griffith AB
    Ecology; 2010 Jan; 91(1):141-54. PubMed ID: 20380204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.
    Palmquist KA; Schlaepfer DR; Bradford JB; Lauenroth WK
    Ecology; 2016 Sep; 97(9):2342-2354. PubMed ID: 27859085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between abiotic constraint, propagule pressure, and biotic resistance regulate plant invasion.
    Byun C; de Blois S; Brisson J
    Oecologia; 2015 May; 178(1):285-96. PubMed ID: 25543850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating anthropogenic factors into regional-scale species distribution models-A novel application in the imperiled sagebrush biome.
    Requena-Mullor JM; Maguire KC; Shinneman DJ; Caughlin TT
    Glob Chang Biol; 2019 Nov; 25(11):3844-3858. PubMed ID: 31180605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.