These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

944 related articles for article (PubMed ID: 2692122)

  • 1. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training.
    Neufer PD
    Sports Med; 1989 Nov; 8(5):302-20. PubMed ID: 2692122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detraining: loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus.
    Mujika I; Padilla S
    Sports Med; 2000 Sep; 30(3):145-54. PubMed ID: 10999420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus.
    Mujika I; Padilla S
    Sports Med; 2000 Aug; 30(2):79-87. PubMed ID: 10966148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering.
    Zavorsky GS
    Sports Med; 2000 Jan; 29(1):13-26. PubMed ID: 10688280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applied physiology of triathlon.
    O'Toole ML; Douglas PS
    Sports Med; 1995 Apr; 19(4):251-67. PubMed ID: 7604198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.
    Laursen PB; Jenkins DG
    Sports Med; 2002; 32(1):53-73. PubMed ID: 11772161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training techniques to improve endurance exercise performances.
    Kubukeli ZN; Noakes TD; Dennis SC
    Sports Med; 2002; 32(8):489-509. PubMed ID: 12076176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of training on the control of skeletal muscle perfusion.
    Delp MD
    Med Sci Sports Exerc; 1998 Mar; 30(3):361-74. PubMed ID: 9526881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering.
    Ross A; Leveritt M
    Sports Med; 2001; 31(15):1063-82. PubMed ID: 11735686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging, sex, and physical training on cardiovascular responses to exercise.
    Ogawa T; Spina RJ; Martin WH; Kohrt WM; Schechtman KB; Holloszy JO; Ehsani AA
    Circulation; 1992 Aug; 86(2):494-503. PubMed ID: 1638717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular adaptations to exercise training in the elderly.
    Ehsani AA
    Fed Proc; 1987 Apr; 46(5):1840-3. PubMed ID: 3556605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two weeks of detraining reduces cardiopulmonary function and muscular fitness in endurance athletes.
    Chen YT; Hsieh YY; Ho JY; Lin TY; Lin JC
    Eur J Sport Sci; 2022 Mar; 22(3):399-406. PubMed ID: 33517866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of the physiological factors determining endurance performance ability.
    Coyle EF
    Exerc Sport Sci Rev; 1995; 23():25-63. PubMed ID: 7556353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histochemical and physiological correlates of training- and detraining-induced changes in the recovery from a fatigue test.
    Sinacore DR; Coyle EF; Hagberg JM; Holloszy JO
    Phys Ther; 1993 Oct; 73(10):661-7. PubMed ID: 8378422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise and the elderly.
    Stamford BA
    Exerc Sport Sci Rev; 1988; 16():341-79. PubMed ID: 3292262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of 24 sessions of high-intensity aerobic interval training carried out at either high or moderate frequency, a randomized trial.
    Hatle H; Støbakk PK; Mølmen HE; Brønstad E; Tjønna AE; Steinshamn S; Skogvoll E; Wisløff U; Ingul CB; Rognmo Ø
    PLoS One; 2014; 9(2):e88375. PubMed ID: 24516645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training.
    Raleigh JP; Giles MD; Islam H; Nelms M; Bentley RF; Jones JH; Neder JA; Boonstra K; Quadrilatero J; Simpson CA; Tschakovsky ME; Gurd BJ
    Appl Physiol Nutr Metab; 2018 Oct; 43(10):1059-1068. PubMed ID: 29733694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis.
    Sloth M; Sloth D; Overgaard K; Dalgas U
    Scand J Med Sci Sports; 2013 Dec; 23(6):e341-52. PubMed ID: 23889316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 30-year follow-up of the Dallas Bedrest and Training Study: II. Effect of age on cardiovascular adaptation to exercise training.
    McGuire DK; Levine BD; Williamson JW; Snell PG; Blomqvist CG; Saltin B; Mitchell JH
    Circulation; 2001 Sep; 104(12):1358-66. PubMed ID: 11560850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptations in muscle metabolism to prolonged voluntary exercise and training.
    Green HJ; Jones S; Ball-Burnett M; Farrance B; Ranney D
    J Appl Physiol (1985); 1995 Jan; 78(1):138-45. PubMed ID: 7713803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.