These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 26921388)
1. Biosynthesis of Fluorinated Analogs of Drugs Using Human Cytochrome P450 Enzymes Followed by Deoxyfluorination and Quantitative Nuclear Magnetic Resonance Spectroscopy to Improve Metabolic Stability. Obach RS; Walker GS; Brodney MA Drug Metab Dispos; 2016 May; 44(5):634-46. PubMed ID: 26921388 [TBL] [Abstract][Full Text] [Related]
2. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Yamazaki H; Guo Z; Persmark M; Mimura M; Inoue K; Guengerich FP; Shimada T Mol Pharmacol; 1994 Sep; 46(3):568-77. PubMed ID: 7935340 [TBL] [Abstract][Full Text] [Related]
3. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Yamazaki H; Shaw PM; Guengerich FP; Shimada T Chem Res Toxicol; 1998 Jun; 11(6):659-65. PubMed ID: 9625734 [TBL] [Abstract][Full Text] [Related]
4. Influence of substituents in fluorobenzene derivatives on the cytochrome P450-catalyzed hydroxylation at the adjacent ortho aromatic carbon center. Koerts J; Velraeds MM; Soffers AE; Vervoort J; Rietjens IM Chem Res Toxicol; 1997 Mar; 10(3):279-88. PubMed ID: 9084907 [TBL] [Abstract][Full Text] [Related]
5. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Labroo RB; Paine MF; Thummel KE; Kharasch ED Drug Metab Dispos; 1997 Sep; 25(9):1072-80. PubMed ID: 9311623 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Reilly CA; Ehlhardt WJ; Jackson DA; Kulanthaivel P; Mutlib AE; Espina RJ; Moody DE; Crouch DJ; Yost GS Chem Res Toxicol; 2003 Mar; 16(3):336-49. PubMed ID: 12641434 [TBL] [Abstract][Full Text] [Related]
7. Studies on the cytochrome P450 (CYP)-mediated metabolic properties of miocamycin: evaluation of the possibility of a metabolic intermediate complex formation with CYP, and identification of the human CYP isoforms. Kasahara M; Suzuki H; Komiya I Drug Metab Dispos; 2000 Apr; 28(4):409-17. PubMed ID: 10725309 [TBL] [Abstract][Full Text] [Related]
8. Metabolite intermediate complexation of microsomal cytochrome P450 2C11 in male rat liver by nortriptyline. Murray M Mol Pharmacol; 1992 Nov; 42(5):931-8. PubMed ID: 1435757 [TBL] [Abstract][Full Text] [Related]
9. Occurrence of the NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring hydroxylation of fluorobenzenes. Koerts J; Soffers AE; Vervoort J; De Jager A; Rietjens IM Chem Res Toxicol; 1998 May; 11(5):503-12. PubMed ID: 9585481 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Miyazawa M; Shindo M; Shimada T Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812 [TBL] [Abstract][Full Text] [Related]
11. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemical inhibitors on this activation in human liver microsomes. Patten CJ; Smith TJ; Murphy SE; Wang MH; Lee J; Tynes RE; Koch P; Yang CS Arch Biochem Biophys; 1996 Sep; 333(1):127-38. PubMed ID: 8806763 [TBL] [Abstract][Full Text] [Related]
12. Identification of human liver cytochrome P450 enzymes involved in the metabolism of SCH 530348 (Vorapaxar), a potent oral thrombin protease-activated receptor 1 antagonist. Ghosal A; Lu X; Penner N; Gao L; Ramanathan R; Chowdhury SK; Kishnani NS; Alton KB Drug Metab Dispos; 2011 Jan; 39(1):30-8. PubMed ID: 20926621 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate (DDB) by human liver microsomes: characterization of metabolic pathways and of cytochrome P450 isoforms involved. Baek MS; Kim JY; Myung SW; Yim YH; Jeong JH; Kim DH Drug Metab Dispos; 2001 Apr; 29(4 Pt 1):381-8. PubMed ID: 11259320 [TBL] [Abstract][Full Text] [Related]
14. Monoclonal antibodies and multifunctional cytochrome P450: drug metabolism as paradigm. Gelboin HV; Krausz K J Clin Pharmacol; 2006 Mar; 46(3):353-72. PubMed ID: 16490812 [TBL] [Abstract][Full Text] [Related]
15. Characterization of ebastine, hydroxyebastine, and carebastine metabolism by human liver microsomes and expressed cytochrome P450 enzymes: major roles for CYP2J2 and CYP3A. Liu KH; Kim MG; Lee DJ; Yoon YJ; Kim MJ; Shon JH; Choi CS; Choi YK; Desta Z; Shin JG Drug Metab Dispos; 2006 Nov; 34(11):1793-7. PubMed ID: 16896065 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Obach RS; Ryder TF Drug Metab Dispos; 2010 Aug; 38(8):1381-91. PubMed ID: 20478852 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of recombinant cytochrome P450 enzymes as an in vitro system for metabolic clearance predictions. Stringer RA; Strain-Damerell C; Nicklin P; Houston JB Drug Metab Dispos; 2009 May; 37(5):1025-34. PubMed ID: 19196847 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of 5-methylchrysene and 6-methylchrysene by human hepatic and pulmonary cytochrome P450 enzymes. Koehl W; Amin S; Staretz ME; Ueng YF; Yamazaki H; Tateishi T; Guengerich FP; Hecht SS Cancer Res; 1996 Jan; 56(2):316-24. PubMed ID: 8542586 [TBL] [Abstract][Full Text] [Related]
19. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. Johnson BM; Shu YZ; Zhuo X; Meanwell NA J Med Chem; 2020 Jun; 63(12):6315-6386. PubMed ID: 32182061 [TBL] [Abstract][Full Text] [Related]