These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1166 related articles for article (PubMed ID: 26921790)

  • 1. Regenerative decline of stem cells in sarcopenia.
    Sousa-Victor P; Muñoz-Cánoves P
    Mol Aspects Med; 2016 Aug; 50():109-17. PubMed ID: 26921790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle stem cell aging: identifying ways to induce tissue rejuvenation.
    Sousa-Victor P; Neves J; Muñoz-Cánoves P
    Mech Ageing Dev; 2020 Jun; 188():111246. PubMed ID: 32311419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 17β-Estradiol and testosterone in sarcopenia: Role of satellite cells.
    La Colla A; Pronsato L; Milanesi L; Vasconsuelo A
    Ageing Res Rev; 2015 Nov; 24(Pt B):166-77. PubMed ID: 26247846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathophysiology and mechanisms of primary sarcopenia (Review).
    Nishikawa H; Fukunishi S; Asai A; Yokohama K; Nishiguchi S; Higuchi K
    Int J Mol Med; 2021 Aug; 48(2):. PubMed ID: 34184088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.
    Joanisse S; Nederveen JP; Snijders T; McKay BR; Parise G
    Gerontology; 2017; 63(1):91-100. PubMed ID: 27760421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells.
    Muñoz-Cánoves P; Neves J; Sousa-Victor P
    FEBS J; 2020 Feb; 287(3):406-416. PubMed ID: 31854082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia.
    Fry CS; Lee JD; Mula J; Kirby TJ; Jackson JR; Liu F; Yang L; Mendias CL; Dupont-Versteegden EE; McCarthy JJ; Peterson CA
    Nat Med; 2015 Jan; 21(1):76-80. PubMed ID: 25501907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of muscle stem cells in sarcopenia.
    Snijders T; Parise G
    Curr Opin Clin Nutr Metab Care; 2017 May; 20(3):186-190. PubMed ID: 28376051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of satellite cells in muscle growth and maintenance of muscle mass.
    Pallafacchina G; Blaauw B; Schiaffino S
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S12-8. PubMed ID: 22621743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation.
    Pietrangelo T; Puglielli C; Mancinelli R; Beccafico S; Fanò G; Fulle S
    Exp Gerontol; 2009 Aug; 44(8):523-31. PubMed ID: 19457451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model.
    Guo AY; Leung KS; Qin JH; Chow SK; Cheung WH
    Rejuvenation Res; 2016 Aug; 19(4):293-302. PubMed ID: 26608404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function.
    Jang YC; Sinha M; Cerletti M; Dall'Osso C; Wagers AJ
    Cold Spring Harb Symp Quant Biol; 2011; 76():101-11. PubMed ID: 21960527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.
    García-Prat L; Sousa-Victor P; Muñoz-Cánoves P
    FEBS J; 2013 Sep; 280(17):4051-62. PubMed ID: 23452120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRMT7 Preserves Satellite Cell Regenerative Capacity.
    Blanc RS; Vogel G; Chen T; Crist C; Richard S
    Cell Rep; 2016 Feb; 14(6):1528-1539. PubMed ID: 26854227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged absence of myostatin reduces sarcopenia.
    Siriett V; Platt L; Salerno MS; Ling N; Kambadur R; Sharma M
    J Cell Physiol; 2006 Dec; 209(3):866-73. PubMed ID: 16972257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.
    Cisterna B; Giagnacovo M; Costanzo M; Fattoretti P; Zancanaro C; Pellicciari C; Malatesta M
    J Anat; 2016 May; 228(5):771-83. PubMed ID: 26739770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cell aging in the skeletal muscle: The importance of communication.
    Hong X; Campanario S; Ramírez-Pardo I; Grima-Terrén M; Isern J; Muñoz-Cánoves P
    Ageing Res Rev; 2022 Jan; 73():101528. PubMed ID: 34818593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative function of immune system: Modulation of muscle stem cells.
    Saini J; McPhee JS; Al-Dabbagh S; Stewart CE; Al-Shanti N
    Ageing Res Rev; 2016 May; 27():67-76. PubMed ID: 27039885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring Mitochondrial Function and Muscle Satellite Cell Signaling: Remedies against Age-Related Sarcopenia.
    Marzetti E; Lozanoska-Ochser B; Calvani R; Landi F; Coelho-Júnior HJ; Picca A
    Biomolecules; 2024 Mar; 14(4):. PubMed ID: 38672432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular mechanisms of sarcopenia: the S100B perspective.
    Riuzzi F; Sorci G; Arcuri C; Giambanco I; Bellezza I; Minelli A; Donato R
    J Cachexia Sarcopenia Muscle; 2018 Dec; 9(7):1255-1268. PubMed ID: 30499235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.