These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26921940)

  • 1. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator.
    Walker GM; Sai J; Richmond A; Stremler M; Chung CY; Wikswo JP
    Lab Chip; 2005 Jun; 5(6):611-8. PubMed ID: 15915253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cell chemotaxis in a simple microfluidic device.
    Lin F; Butcher EC
    Lab Chip; 2006 Nov; 6(11):1462-9. PubMed ID: 17066171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of chemotaxis assays from static models to physiologically relevant platforms.
    Toetsch S; Olwell P; Prina-Mello A; Volkov Y
    Integr Biol (Camb); 2009 Feb; 1(2):170-81. PubMed ID: 20023801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrophil Chemotaxis in One Droplet of Blood Using Microfluidic Assays.
    Wang X; Irimia D
    Methods Mol Biol; 2018; 1749():351-360. PubMed ID: 29526009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm.
    Ko YJ; Maeng JH; Hwang SY; Ahn Y
    SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells.
    Liu Y; Sai J; Richmond A; Wikswo JP
    Biomed Microdevices; 2008 Aug; 10(4):499-507. PubMed ID: 18205049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The IL sequence in the LLKIL motif in CXCR2 is required for full ligand-induced activation of Erk, Akt, and chemotaxis in HL60 cells.
    Sai J; Walker G; Wikswo J; Richmond A
    J Biol Chem; 2006 Nov; 281(47):35931-41. PubMed ID: 16990258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a microfluidic device for studying the combinatorial effect of physical and chemical cues on cell migration.
    Saxena N; Jadhav S; Sen S
    STAR Protoc; 2021 Mar; 2(1):100310. PubMed ID: 33554144
    [No Abstract]   [Full Text] [Related]  

  • 15. Acoustically-driven thread-based tuneable gradient generators.
    Ramesan S; Rezk AR; Cheng KW; Chan PP; Yeo LY
    Lab Chip; 2016 Aug; 16(15):2820-8. PubMed ID: 27334420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood.
    Yang K; Wu J; Zhu L; Liu Y; Zhang M; Lin F
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment.
    Satti S; Deng P; Matthews K; Duffy SP; Ma H
    Lab Chip; 2020 Aug; 20(17):3096-3103. PubMed ID: 32748936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microfluidic lighthouse: an omnidirectional gradient generator.
    Nakajima A; Ishida M; Fujimori T; Wakamoto Y; Sawai S
    Lab Chip; 2016 Nov; 16(22):4382-4394. PubMed ID: 27735954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.