BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26921945)

  • 1. Analysis of Arrestin Recruitment to Chemokine Receptors by Bioluminescence Resonance Energy Transfer.
    Bonneterre J; Montpas N; Boularan C; Galés C; Heveker N
    Methods Enzymol; 2016; 570():131-53. PubMed ID: 26921945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of the different natural CC chemokine receptor 2b ligands on beta-arrestin recruitment, Gαi signaling, and receptor internalization.
    Berchiche YA; Gravel S; Pelletier ME; St-Onge G; Heveker N
    Mol Pharmacol; 2011 Mar; 79(3):488-98. PubMed ID: 21088225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased signaling at chemokine receptors.
    Corbisier J; Galès C; Huszagh A; Parmentier M; Springael JY
    J Biol Chem; 2015 Apr; 290(15):9542-54. PubMed ID: 25614627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and β-arrestin recruitment.
    Croker DE; Halai R; Kaeslin G; Wende E; Fehlhaber B; Klos A; Monk PN; Cooper MA
    Immunol Cell Biol; 2014 Aug; 92(7):631-9. PubMed ID: 24777312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins.
    Bedini A
    Methods Mol Biol; 2015; 1230():115-28. PubMed ID: 25293320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved donor/acceptor BRET couples for monitoring beta-arrestin recruitment to G protein-coupled receptors.
    Kamal M; Marquez M; Vauthier V; Leloire A; Froguel P; Jockers R; Couturier C
    Biotechnol J; 2009 Sep; 4(9):1337-44. PubMed ID: 19557797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer.
    Fillion D; Devost D; Hébert TE
    Methods Mol Biol; 2019; 1957():83-91. PubMed ID: 30919348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.
    Donthamsetti P; Quejada JR; Javitch JA; Gurevich VV; Lambert NA
    Curr Protoc Pharmacol; 2015 Sep; 70():2.14.1-2.14.14. PubMed ID: 26331887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRET approaches to characterize dopamine and TAAR1 receptor pharmacology and signaling.
    Espinoza S; Masri B; Salahpour A; Gainetdinov RR
    Methods Mol Biol; 2013; 964():107-22. PubMed ID: 23296781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Resonance Energy Transfer Techniques for In Vivo Detection of Chemokine Receptor Oligomerization.
    Martínez-Muñoz L; Rodríguez-Frade JM; Mellado M
    Methods Mol Biol; 2016; 1407():341-59. PubMed ID: 27271913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors.
    Namkung Y; LeGouill C; Kumar S; Cao Y; Teixeira LB; Lukasheva V; Giubilaro J; Simões SC; Longpré JM; Devost D; Hébert TE; Piñeyro G; Leduc R; Costa-Neto CM; Bouvier M; Laporte SA
    Sci Signal; 2018 Dec; 11(559):. PubMed ID: 30514808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying biased signaling in GPCRs using BRET-based biosensors.
    Namkung Y; Radresa O; Armando S; Devost D; Beautrait A; Le Gouill C; Laporte SA
    Methods; 2016 Jan; 92():5-10. PubMed ID: 25890247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors.
    Strungs EG; Luttrell LM; Lee MH
    Methods Mol Biol; 2019; 1957():309-322. PubMed ID: 30919362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors.
    Ma X; Leurs R; Vischer HF
    Methods Mol Biol; 2021; 2268():233-248. PubMed ID: 34085273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay.
    Hamdan FF; Audet M; Garneau P; Pelletier J; Bouvier M
    J Biomol Screen; 2005 Aug; 10(5):463-75. PubMed ID: 16093556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrestin Recruitment to C-C Chemokine Receptor 5: Potent C-C Chemokine Ligand 5 Analogs Reveal Differences in Dependence on Receptor Phosphorylation and Isoform-Specific Recruitment Bias.
    Martins E; Brodier H; Rossitto-Borlat I; Ilgaz I; Villard M; Hartley O
    Mol Pharmacol; 2020 Nov; 98(5):599-611. PubMed ID: 32943494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Cell Arrestin-Receptor Interaction Assays.
    Zheng C; Javitch JA; Lambert NA; Donthamsetti P; Gurevich VV
    Curr Protoc; 2023 Oct; 3(10):e890. PubMed ID: 37787634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the BRET 7TM receptor/beta-arrestin assay in drug discovery and screening.
    Heding A
    Expert Rev Mol Diagn; 2004 May; 4(3):403-11. PubMed ID: 15137906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.