These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26921945)

  • 21. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.
    Nagi K; Shenoy SK
    Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.
    Namkung Y; Le Gouill C; Lukashova V; Kobayashi H; Hogue M; Khoury E; Song M; Bouvier M; Laporte SA
    Nat Commun; 2016 Jul; 7():12178. PubMed ID: 27397672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells.
    Ayoub MA; Maurel D; Binet V; Fink M; Prézeau L; Ansanay H; Pin JP
    Mol Pharmacol; 2007 May; 71(5):1329-40. PubMed ID: 17267663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors.
    Verkaar F; van Rosmalen JW; Blomenröhr M; van Koppen CJ; Blankesteijn WM; Smits JF; Zaman GJ
    Biotechnol Annu Rev; 2008; 14():253-74. PubMed ID: 18606367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biased agonism as a mechanism for differential signaling by chemokine receptors.
    Rajagopal S; Bassoni DL; Campbell JJ; Gerard NP; Gerard C; Wehrman TS
    J Biol Chem; 2013 Dec; 288(49):35039-48. PubMed ID: 24145037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innovative Bioluminescence Resonance Energy Transfer Assay Reveals Differential Agonist-Induced D2 Receptor Intracellular Trafficking and Arrestin-3 Recruitment.
    De Vries L; Finana F; Cathala C; Ronsin B; Cussac D
    Mol Pharmacol; 2019 Sep; 96(3):308-319. PubMed ID: 31266815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of G protein-coupled receptor-heteromer identification technology to monitor β-arrestin recruitment to G protein-coupled receptor heteromers.
    See HB; Seeber RM; Kocan M; Eidne KA; Pfleger KD
    Assay Drug Dev Technol; 2011 Feb; 9(1):21-30. PubMed ID: 21133678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring interactions between G-protein-coupled receptors and beta-arrestins.
    Pfleger KD; Dalrymple MB; Dromey JR; Eidne KA
    Biochem Soc Trans; 2007 Aug; 35(Pt 4):764-6. PubMed ID: 17635143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional selectivity of natural and synthetic prostaglandin EP4 receptor ligands.
    Leduc M; Breton B; Galés C; Le Gouill C; Bouvier M; Chemtob S; Heveker N
    J Pharmacol Exp Ther; 2009 Oct; 331(1):297-307. PubMed ID: 19584306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of G Protein and β-Arrestin Activation in Chemokine Receptors Signaling.
    Vacchini A; Busnelli M; Chini B; Locati M; Borroni EM
    Methods Enzymol; 2016; 570():421-40. PubMed ID: 26921957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimeric Purinoceptor Detection by Bioluminescence Resonance Energy Transfer.
    Compan V; Rassendren F
    Methods Mol Biol; 2020; 2041():155-162. PubMed ID: 31646487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Effect of Cell Surface Expression and Linker Sequence on the Recruitment of Arrestin to the GIP Receptor.
    Al-Sabah S; Adi L; Bünemann M; Krasel C
    Front Pharmacol; 2020; 11():1271. PubMed ID: 32903502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a BRET2 screening assay using beta-arrestin 2 mutants.
    Vrecl M; Jorgensen R; Pogacnik A; Heding A
    J Biomol Screen; 2004 Jun; 9(4):322-33. PubMed ID: 15191649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chemokine CXC4 and CC2 receptors form homo- and heterooligomers that can engage their signaling G-protein effectors and βarrestin.
    Armando S; Quoyer J; Lukashova V; Maiga A; Percherancier Y; Heveker N; Pin JP; Prézeau L; Bouvier M
    FASEB J; 2014 Oct; 28(10):4509-23. PubMed ID: 25053617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors.
    Brulé C; Perzo N; Joubert JE; Sainsily X; Leduc R; Castel H; Prézeau L
    FASEB J; 2014 Dec; 28(12):5148-62. PubMed ID: 25183668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of BRET to Measure β-Arrestin Recruitment at Oxytocin and Vasopressin Receptors.
    Muratspahić E; Gattringer J; Gruber CW
    Methods Mol Biol; 2022; 2384():221-229. PubMed ID: 34550577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioluminescence Resonance Energy Transfer Approaches to Discover Bias in GPCR Signaling.
    Johnstone EK; Pfleger KD
    Methods Mol Biol; 2015; 1335():191-204. PubMed ID: 26260602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of GPCR-protein interactions by BRET.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2011; 746():357-71. PubMed ID: 21607868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays.
    Ayoub MA; Landomiel F; Gallay N; Jégot G; Poupon A; Crépieux P; Reiter E
    Front Endocrinol (Lausanne); 2015; 6():130. PubMed ID: 26379624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.