These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26922002)

  • 1. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source.
    Kim H; Kim J; Shin SG; Hwang S; Lee C
    Bioresour Technol; 2016 May; 207():440-5. PubMed ID: 26922002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.
    Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H
    Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source.
    Guo L; Zhang J; Yin L; Zhao Y; Gao M; She Z
    Water Sci Technol; 2015; 72(8):1348-57. PubMed ID: 26465305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.
    Yang X; Wan C; Lee DJ; Du M; Pan X; Wan F
    Bioresour Technol; 2014 Sep; 168():173-9. PubMed ID: 24630368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.
    Shen D; Yin J; Yu X; Wang M; Long Y; Shentu J; Chen T
    Bioresour Technol; 2017 Mar; 227():125-132. PubMed ID: 28013128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sewage denitrification performance and sludge properties variation with the addition of liquid from perishable organic anaerobic fermentation.
    Zhu Z; Guo Y; Zhao Y; Zhang R; Yu Y; Zhang M; Zhou T
    Bioresour Technol; 2021 Dec; 341():125821. PubMed ID: 34523552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH.
    Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G
    J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.
    Zhou M; Yan B; Wong JWC; Zhang Y
    Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition.
    Cheah YK; Dosta J; Mata-Álvarez J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological denitrification from mature landfill leachate using a food-waste-derived carbon source.
    Yan F; Jiang J; Zhang H; Liu N; Zou Q
    J Environ Manage; 2018 May; 214():184-191. PubMed ID: 29525750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of arsenite on denitrification using volatile fatty acids (VFAs) as a carbon source.
    Panthi SR; Wareham DG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Aug; 43(10):1192-7. PubMed ID: 18584435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl.
    He X; Yin J; Liu J; Chen T; Shen D
    Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source.
    Wang P; Chen XT; Qiu YQ; Liang XF; Cheng MM; Wang YJ; Ren LH
    Biotechnol Appl Biochem; 2020 May; 67(3):307-316. PubMed ID: 31702835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor.
    Wainaina S; Parchami M; Mahboubi A; Horváth IS; Taherzadeh MJ
    Bioresour Technol; 2019 Feb; 274():329-334. PubMed ID: 30529480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.
    Wang B; Peng Y; Guo Y; Wang S
    J Biosci Bioeng; 2016 Apr; 121(4):431-4. PubMed ID: 26475401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidogenic fermentation: utilization of wasted sludge as a carbon source in the denitrification process.
    Min KS; Park KS; Jung YJ; Khan AR; Kim YJ
    Environ Technol; 2002 Mar; 23(3):293-302. PubMed ID: 11999991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of food waste-derived volatile fatty acids as alternative carbon source for denitrifying moving bed biofilm reactors.
    Sapmaz T; Manafi R; Mahboubi A; Lorick D; Koseoglu-Imer DY; Taherzadeh MJ
    Bioresour Technol; 2022 Nov; 364():128046. PubMed ID: 36182012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.