BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 26923000)

  • 1. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy.
    Spranger S; Sivan A; Corrales L; Gajewski TF
    Adv Immunol; 2016; 130():75-93. PubMed ID: 26923000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
    Sivan A; Corrales L; Hubert N; Williams JB; Aquino-Michaels K; Earley ZM; Benyamin FW; Lei YM; Jabri B; Alegre ML; Chang EB; Gajewski TF
    Science; 2015 Nov; 350(6264):1084-9. PubMed ID: 26541606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic Cells, the T-cell-inflamed Tumor Microenvironment, and Immunotherapy Treatment Response.
    Garris CS; Luke JJ
    Clin Cancer Res; 2020 Aug; 26(15):3901-3907. PubMed ID: 32332013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WNT/β-Catenin Signaling Pathway Regulating T Cell-Inflammation in the Tumor Microenvironment.
    Li X; Xiang Y; Li F; Yin C; Li B; Ke X
    Front Immunol; 2019; 10():2293. PubMed ID: 31616443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer.
    Ward JP; Gubin MM; Schreiber RD
    Adv Immunol; 2016; 130():25-74. PubMed ID: 26922999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment.
    Gajewski TF
    Semin Oncol; 2015 Aug; 42(4):663-71. PubMed ID: 26320069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy.
    Rivadeneira DB; Delgoffe GM
    Clin Cancer Res; 2018 Jun; 24(11):2473-2481. PubMed ID: 29386217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Local Radiation Therapy in Cancer Immunotherapy.
    Demaria S; Golden EB; Formenti SC
    JAMA Oncol; 2015 Dec; 1(9):1325-32. PubMed ID: 26270858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting iNOS to increase efficacy of immunotherapies.
    Ekmekcioglu S; Grimm EA; Roszik J
    Hum Vaccin Immunother; 2017 May; 13(5):1105-1108. PubMed ID: 28121247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Immunotherapy: new insights].
    Geissler M; Weth R
    Praxis (Bern 1994); 2002 Dec; 91(51-52):2236-46. PubMed ID: 12564040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment.
    Gajewski TF; Corrales L; Williams J; Horton B; Sivan A; Spranger S
    Adv Exp Med Biol; 2017; 1036():19-31. PubMed ID: 29275462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation.
    Yaguchi T; Kawakami Y
    Int Immunol; 2016 Aug; 28(8):393-9. PubMed ID: 27401477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for TIM3-Targeted Antitumor Immunotherapy.
    Ngiow SF; Teng MW; Smyth MJ
    Cancer Res; 2011 Nov; 71(21):6567-71. PubMed ID: 22009533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets.
    Tsai HF; Hsu PN
    J Biomed Sci; 2017 May; 24(1):35. PubMed ID: 28545567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy.
    Palazón A; Martínez-Forero I; Teijeira A; Morales-Kastresana A; Alfaro C; Sanmamed MF; Perez-Gracia JL; Peñuelas I; Hervás-Stubbs S; Rouzaut A; de Landázuri MO; Jure-Kunkel M; Aragonés J; Melero I
    Cancer Discov; 2012 Jul; 2(7):608-23. PubMed ID: 22719018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection.
    Trujillo JA; Sweis RF; Bao R; Luke JJ
    Cancer Immunol Res; 2018 Sep; 6(9):990-1000. PubMed ID: 30181337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy.
    Pilon-Thomas S; Kodumudi KN; El-Kenawi AE; Russell S; Weber AM; Luddy K; Damaghi M; Wojtkowiak JW; Mulé JJ; Ibrahim-Hashim A; Gillies RJ
    Cancer Res; 2016 Mar; 76(6):1381-90. PubMed ID: 26719539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial Cancer Immunotherapies.
    Hellmann MD; Friedman CF; Wolchok JD
    Adv Immunol; 2016; 130():251-77. PubMed ID: 26923003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Dimensional Profiling of Tumor-Specific Immune Responses: Asking T Cells about What They "See" in Cancer.
    Newell EW; Becht E
    Cancer Immunol Res; 2018 Jan; 6(1):2-9. PubMed ID: 29298781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.