BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26923141)

  • 1. Fish-on-a-chip: microfluidics for zebrafish research.
    Yang F; Gao C; Wang P; Zhang GJ; Chen Z
    Lab Chip; 2016 Apr; 16(7):1106-25. PubMed ID: 26923141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy.
    Akagi J; Zhu F; Skommer J; Hall CJ; Crosier PS; Cialkowski M; Wlodkowic D
    Cytometry A; 2015 Mar; 87(3):190-4. PubMed ID: 25483307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for embryonic and larval zebrafish studies.
    Khalili A; Rezai P
    Brief Funct Genomics; 2019 Nov; 18(6):419-432. PubMed ID: 31034029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.
    Wang KI; Salcic Z; Yeh J; Akagi J; Zhu F; Hall CJ; Crosier KE; Crosier PS; Wlodkowic D
    Biosens Bioelectron; 2013 Oct; 48():188-96. PubMed ID: 23685315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.
    Zhu F; Hall CJ; Crosier PS; Wlodkowic D
    Zebrafish; 2015 Aug; 12(4):315-8. PubMed ID: 26132783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).
    Zhu F; Wigh A; Friedrich T; Devaux A; Bony S; Nugegoda D; Kaslin J; Wlodkowic D
    Environ Sci Technol; 2015 Dec; 49(24):14570-8. PubMed ID: 26506399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for mechanobiology of model organisms.
    Kim AA; Nekimken AL; Fechner S; O'Brien LE; Pruitt BL
    Methods Cell Biol; 2018; 146():217-259. PubMed ID: 30037463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.
    Zhu F; Skommer J; Huang Y; Akagi J; Adams D; Levin M; Hall CJ; Crosier PS; Wlodkowic D
    Cytometry A; 2014 Nov; 85(11):921-32. PubMed ID: 25287981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.
    Akagi J; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D
    Curr Protoc Cytom; 2014 Jan; 67():9.44.1-9.44.16. PubMed ID: 24510773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae.
    Zabihihesari A; Khalili A; Hilliker AJ; Rezai P
    Comput Biol Med; 2021 May; 132():104314. PubMed ID: 33774273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish embryo development in a microfluidic flow-through system.
    Wielhouwer EM; Ali S; Al-Afandi A; Blom MT; Riekerink MB; Poelma C; Westerweel J; Oonk J; Vrouwe EX; Buesink W; vanMil HG; Chicken J; van't Oever R; Richardson MK
    Lab Chip; 2011 May; 11(10):1815-24. PubMed ID: 21491052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology.
    Akagi J; Zhu F; Hall CJ; Crosier KE; Crosier PS; Wlodkowic D
    Cytometry A; 2014 Jun; 85(6):537-47. PubMed ID: 24664821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies.
    Zabihihesari A; Hilliker AJ; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(12):425-443. PubMed ID: 31965192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing microfluidic devices for behavioral screening of multiple zebrafish larvae.
    Khalili A; van Wijngaarden E; Youssef K; Zoidl GR; Rezai P
    Biotechnol J; 2022 Jan; 17(1):e2100076. PubMed ID: 34480402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolved oxygen gradient on three dimensionally printed microfluidic platform for studying its effect on fish at three levels: cell, embryo, and larva.
    Liu P; Fu L; Li B; Man M; Ji Y; Kang Q; Sun X; Shen D; Chen L
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21978-21989. PubMed ID: 36282391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2020 Sep; 12(8):211-220. PubMed ID: 32877926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection.
    Huang NT; Zhang HL; Chung MT; Seo JH; Kurabayashi K
    Lab Chip; 2014 Apr; 14(7):1230-45. PubMed ID: 24525555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device for quantitative investigation of zebrafish larvae's rheotaxis.
    Peimani AR; Zoidl G; Rezai P
    Biomed Microdevices; 2017 Nov; 19(4):99. PubMed ID: 29116415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.