These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26923141)

  • 61. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering.
    Wan J; Zhou S; Mea HJ; Guo Y; Ku H; Urbina BM
    Chem Rev; 2022 Apr; 122(7):7142-7181. PubMed ID: 35080375
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microfluidic devices for bioapplications.
    Yeo LY; Chang HC; Chan PP; Friend JR
    Small; 2011 Jan; 7(1):12-48. PubMed ID: 21072867
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook.
    Bal-Öztürk A; Miccoli B; Avci-Adali M; Mogtader F; Sharifi F; Çeçen B; Yaşayan G; Braeken D; Alarcin E
    Curr Pharm Des; 2018; 24(45):5437-5457. PubMed ID: 30727878
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates.
    Yanik MF; Rohde CB; Pardo-Martin C
    Annu Rev Biomed Eng; 2011 Aug; 13():185-217. PubMed ID: 21756142
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.
    Rudin-Bitterli TS; Tills O; Spicer JI; Culverhouse PF; Wielhouwer EM; Richardson MK; Rundle SD
    PLoS One; 2014; 9(12):e113235. PubMed ID: 25464030
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Automated feature detection and imaging for high-resolution screening of zebrafish embryos.
    Peravali R; Gehrig J; Giselbrecht S; Lütjohann DS; Hadzhiev Y; Müller F; Liebel U
    Biotechniques; 2011 May; 50(5):319-24. PubMed ID: 21548893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis.
    Kim JA; Hong S; Rhee WJ
    World J Stem Cells; 2019 Oct; 11(10):803-816. PubMed ID: 31693013
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Beyond organoids: In vitro vasculogenesis and angiogenesis using cells from mammals and zebrafish.
    Ibrahim M; Richardson MK
    Reprod Toxicol; 2017 Oct; 73():292-311. PubMed ID: 28697965
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Using zebrafish in systems toxicology for developmental toxicity testing.
    Nishimura Y; Inoue A; Sasagawa S; Koiwa J; Kawaguchi K; Kawase R; Maruyama T; Kim S; Tanaka T
    Congenit Anom (Kyoto); 2016 Jan; 56(1):18-27. PubMed ID: 26537640
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing.
    Wittbrodt JN; Liebel U; Gehrig J
    BMC Biotechnol; 2014 May; 14():36. PubMed ID: 24886511
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
    Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD
    Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Zebrafish development and regeneration: new tools for biomedical research.
    Brittijn SA; Duivesteijn SJ; Belmamoune M; Bertens LF; Bitter W; de Bruijn JD; Champagne DL; Cuppen E; Flik G; Vandenbroucke-Grauls CM; Janssen RA; de Jong IM; de Kloet ER; Kros A; Meijer AH; Metz JR; van der Sar AM; Schaaf MJ; Schulte-Merker S; Spaink HP; Tak PP; Verbeek FJ; Vervoordeldonk MJ; Vonk FJ; Witte F; Yuan H; Richardson MK
    Int J Dev Biol; 2009; 53(5-6):835-50. PubMed ID: 19557689
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microfluidics expands the zebrafish potentials in pharmaceutically relevant screening.
    Chen CY; Cheng CM
    Adv Healthc Mater; 2014 Jun; 3(6):940-5. PubMed ID: 24459083
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.
    Park K; Kabiri S; Sonkusale S
    Biomed Microdevices; 2016 Feb; 18(1):6. PubMed ID: 26780441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs.
    Ardeshiri R; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5749-5752. PubMed ID: 28269560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.