These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 26923594)

  • 1. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.
    Park JH; Vithayathil S; Kumar S; Sung PL; Dobrolecki LE; Putluri V; Bhat VB; Bhowmik SK; Gupta V; Arora K; Wu D; Tsouko E; Zhang Y; Maity S; Donti TR; Graham BH; Frigo DE; Coarfa C; Yotnda P; Putluri N; Sreekumar A; Lewis MT; Creighton CJ; Wong LC; Kaipparettu BA
    Cell Rep; 2016 Mar; 14(9):2154-2165. PubMed ID: 26923594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.
    Camarda R; Zhou AY; Kohnz RA; Balakrishnan S; Mahieu C; Anderton B; Eyob H; Kajimura S; Tward A; Krings G; Nomura DK; Goga A
    Nat Med; 2016 Apr; 22(4):427-32. PubMed ID: 26950360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation.
    Wright HJ; Hou J; Xu B; Cortez M; Potma EO; Tromberg BJ; Razorenova OV
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):E6556-E6565. PubMed ID: 28739932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic Rewiring Promotes Endocrine Therapy Resistance in Breast Cancer.
    Ahn S; Park JH; Grimm SL; Piyarathna DWB; Samanta T; Putluri V; Mezquita D; Fuqua SAW; Putluri N; Coarfa C; Kaipparettu BA
    Cancer Res; 2024 Jan; 84(2):291-304. PubMed ID: 37906431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1.
    Ruidas B; Sur TK; Das Mukhopadhyay C; Sinha K; Som Chaudhury S; Sharma P; Bhowmick S; Majumder R; Saha A
    Breast Cancer; 2022 Jul; 29(4):748-760. PubMed ID: 35511410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dasatinib inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells which overexpress Syndecan-Binding Protein (SDCBP).
    Qian XL; Zhang J; Li PZ; Lang RG; Li WD; Sun H; Liu FF; Guo XJ; Gu F; Fu L
    PLoS One; 2017; 12(1):e0171169. PubMed ID: 28141839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD24 negativity reprograms mitochondrial metabolism to PPARα and NF-κB-driven fatty acid β-oxidation in triple-negative breast cancer.
    Murthy D; Dutta D; Attri KS; Samanta T; Yang S; Jung KH; Latario SG; Putluri V; Huang S; Putluri N; Park JH; Kaipparettu BA
    Cancer Lett; 2024 Apr; 587():216724. PubMed ID: 38373689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HRD1 inhibits fatty acid oxidation and tumorigenesis by ubiquitinating CPT2 in triple-negative breast cancer.
    Guo X; Wang A; Wang W; Wang Y; Chen H; Liu X; Xia T; Zhang A; Chen D; Qi H; Ling T; Piao HL; Wang HJ
    Mol Oncol; 2021 Feb; 15(2):642-656. PubMed ID: 33207079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FABP4-mediated lipid metabolism promotes TNBC progression and breast cancer stem cell activity.
    Yu L; Wei W; Lv J; Lu Y; Wang Z; Cai C
    Cancer Lett; 2024 Nov; 604():217271. PubMed ID: 39306229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of OVOL2 in Triple-Negative Breast Cancer Promotes Fatty Acid Oxidation Fueling Stemness Characteristics.
    Lu R; Hong J; Fu T; Zhu Y; Tong R; Ai D; Wang S; Huang Q; Chen C; Zhang Z; Zhang R; Guo H; Li B
    Adv Sci (Weinh); 2024 Jun; 11(24):e2308945. PubMed ID: 38627980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snail augments fatty acid oxidation by suppression of mitochondrial ACC2 during cancer progression.
    Yang JH; Kim NH; Yun JS; Cho ES; Cha YH; Cho SB; Lee SH; Cha SY; Kim SY; Choi J; Nguyen TM; Park S; Kim HS; Yook JI
    Life Sci Alliance; 2020 Jul; 3(7):. PubMed ID: 32487689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells.
    Reis LMD; Adamoski D; Ornitz Oliveira Souza R; Rodrigues Ascenção CF; Sousa de Oliveira KR; Corrêa-da-Silva F; Malta de Sá Patroni F; Meira Dias M; Consonni SR; Mendes de Moraes-Vieira PM; Silber AM; Dias SMG
    J Biol Chem; 2019 Jun; 294(24):9342-9357. PubMed ID: 31040181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers.
    Aiderus A; Black MA; Dunbier AK
    BMC Cancer; 2018 Aug; 18(1):805. PubMed ID: 30092766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival.
    De Oliveira MP; Liesa M
    Cells; 2020 Dec; 9(12):. PubMed ID: 33291682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metastatic TNBC is closely associated with a fused mitochondrial morphology and a glycolytic and lipogenic metabolism.
    Pérez-Treviño P; Aguayo-Millán CD; Santuario-Facio SK; Vela-Guajardo JE; Salazar E; Camacho-Morales A; Ortiz R; García N
    Biochem Cell Biol; 2021 Aug; 99(4):447-456. PubMed ID: 33342359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition.
    Su CM; Lee WH; Wu AT; Lin YK; Wang LS; Wu CH; Yeh CT
    J Nutr Biochem; 2015 Jun; 26(6):675-85. PubMed ID: 25792283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of mitochondrial fatty acid β-oxidation in human: what can we learn from inborn fatty acid β-oxidation deficiencies?
    Bastin J
    Biochimie; 2014 Jan; 96():113-20. PubMed ID: 23764392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism.
    Chen CL; Uthaya Kumar DB; Punj V; Xu J; Sher L; Tahara SM; Hess S; Machida K
    Cell Metab; 2016 Jan; 23(1):206-19. PubMed ID: 26724859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.
    Rodríguez-Enríquez S; Hernández-Esquivel L; Marín-Hernández A; El Hafidi M; Gallardo-Pérez JC; Hernández-Reséndiz I; Rodríguez-Zavala JS; Pacheco-Velázquez SC; Moreno-Sánchez R
    Int J Biochem Cell Biol; 2015 Aug; 65():209-21. PubMed ID: 26073129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer.
    Ma Y; Temkin SM; Hawkridge AM; Guo C; Wang W; Wang XY; Fang X
    Cancer Lett; 2018 Oct; 435():92-100. PubMed ID: 30102953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.