These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26923610)

  • 1. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays.
    Lee J; Sung S; Choi JH; Eom SC; Mortensen NA; Shin JH
    Sci Rep; 2016 Feb; 6():22305. PubMed ID: 26923610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications.
    Xiang C; Chan CK; Wang J
    Sci Rep; 2014 Jan; 4():3720. PubMed ID: 24430254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic waveguide ring resonators with 4 nm air gap and λ0(2)/15,000 mode-area fabricated using photolithography.
    Lee J; Song J; Sung GY; Shin JH
    Nano Lett; 2014 Oct; 14(10):5533-8. PubMed ID: 25198781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap.
    Avrutsky I; Soref R; Buchwald W
    Opt Express; 2010 Jan; 18(1):348-63. PubMed ID: 20173855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field spectroscopy and tuning of sub-surface modes in plasmonic terahertz resonators.
    Mitrofanov O; Todorov Y; Gacemi D; Mottaghizadeh A; Sirtori C; Brener I; Reno JL
    Opt Express; 2018 Mar; 26(6):7437-7450. PubMed ID: 29609298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators.
    Qin F; Zhang Q; Xiao JJ
    Sci Rep; 2016 Jul; 6():29773. PubMed ID: 27405356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide.
    Chu HS; Akimov Y; Bai P; Li EP
    Opt Lett; 2012 Nov; 37(21):4564-6. PubMed ID: 23114364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous layer gap plasmon resonators.
    Nielsen MG; Gramotnev DK; Pors A; Albrektsen O; Bozhevolnyi SI
    Opt Express; 2011 Sep; 19(20):19310-22. PubMed ID: 21996871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of air/metal and substrate/metal surface plasmon polaritons in Au slit arrays fabricated on quartz substrate.
    Kim SH; Lee CM; Ahn KJ; Yee KJ
    Opt Express; 2013 Sep; 21(19):21871-8. PubMed ID: 24104079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap.
    Uchida S; Zettsu N; Endo K; Yamamura K
    Nanoscale Res Lett; 2013 Jun; 8(1):274. PubMed ID: 23758903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely confined gap surface-plasmon modes excited by electrons.
    Raza S; Stenger N; Pors A; Holmgaard T; Kadkhodazadeh S; Wagner JB; Pedersen K; Wubs M; Bozhevolnyi SI; Mortensen NA
    Nat Commun; 2014 Jun; 5():4125. PubMed ID: 24939641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Near-Field SEIRA Enhancements in Plasmonic Resonators.
    Chae J; Lahiri B; Centrone A
    ACS Photonics; 2016 Jan; 3(1):87-95. PubMed ID: 27182532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves.
    Beermann J; Eriksen RL; Holmgaard T; Pedersen K; Bozhevolnyi SI
    Sci Rep; 2014 Nov; 4():6904. PubMed ID: 25365991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs).
    Zand I; Abrishamian MS; Berini P
    Opt Express; 2013 Jan; 21(1):79-86. PubMed ID: 23388898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators.
    Berrier A; Albella P; Poyli MA; Ulbricht R; Bonn M; Aizpurua J; Rivas JG
    Opt Express; 2012 Feb; 20(5):5052-60. PubMed ID: 22418310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators.
    Li H; Guo Y; Sun Y; Reddy K; Fan X
    Opt Express; 2010 Nov; 18(24):25081-8. PubMed ID: 21164854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced fluorescence from arrays of nanoholes in a gold film.
    Brolo AG; Kwok SC; Moffitt MG; Gordon R; Riordon J; Kavanagh KL
    J Am Chem Soc; 2005 Oct; 127(42):14936-41. PubMed ID: 16231950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-fine electrochemical tuning of hybridized plasmon modes for ultimate light confinement.
    Oikawa S; Minamimoto H; Ohnuki A; Murakoshi K
    Nanoscale; 2020 Jun; 12(21):11593-11600. PubMed ID: 32432305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system.
    Yu B; Woo J; Kong M; O'Carroll DM
    Nanoscale; 2015 Aug; 7(31):13196-206. PubMed ID: 26098863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.