These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 26923824)
1. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability. Jacobs K; Zambelli F; Mertzanidou A; Smolders I; Geens M; Nguyen HT; Barbé L; Sermon K; Spits C Stem Cell Reports; 2016 Mar; 6(3):330-41. PubMed ID: 26923824 [TBL] [Abstract][Full Text] [Related]
2. Trace levels of mitomycin C disrupt genomic integrity and lead to DNA damage response defect in long-term-cultured human embryonic stem cells. Zhou D; Lin G; Zeng SC; Xiong B; Xie PY; Cheng DH; Zheng Q; Ouyang Q; Zhou XY; Tang WL; Sun Y; Lu GY; Lu GX Arch Toxicol; 2015 Jan; 89(1):33-45. PubMed ID: 24838295 [TBL] [Abstract][Full Text] [Related]
3. [The problem of genomic instability of cultivated human stem cells]. Polianskaia GG Tsitologiia; 2014; 56(10):697-707. PubMed ID: 25711078 [TBL] [Abstract][Full Text] [Related]
4. Methods for culturing mouse and human embryonic stem cells. Lin S; Talbot P Methods Mol Biol; 2011; 690():31-56. PubMed ID: 21042983 [TBL] [Abstract][Full Text] [Related]
5. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions. Choo A; Ngo AS; Ding V; Oh S; Kiang LS Methods Cell Biol; 2008; 86():15-28. PubMed ID: 18442642 [TBL] [Abstract][Full Text] [Related]
6. Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Catalina P; Montes R; Ligero G; Sanchez L; de la Cueva T; Bueno C; Leone PE; Menendez P Mol Cancer; 2008 Oct; 7():76. PubMed ID: 18834512 [TBL] [Abstract][Full Text] [Related]
7. Long-term culture of Japanese human embryonic stem cells in feeder-free conditions. Navarro-Alvarez N; Soto-Gutierrez A; Yuasa T; Yamatsuji T; Shirakawa Y; Nagasaka T; Sun SD; Javed MS; Tanaka N; Kobayashi N Cell Transplant; 2008; 17(1-2):27-33. PubMed ID: 18468232 [TBL] [Abstract][Full Text] [Related]
8. A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells. Axell MZ; Zlateva S; Curtis M J Neurosci Methods; 2009 Nov; 184(2):275-84. PubMed ID: 19715727 [TBL] [Abstract][Full Text] [Related]
9. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture. Meng G; Liu S; Krawetz R; Chan M; Chernos J; Rancourt DE Stem Cells Dev; 2008 Jun; 17(3):413-22. PubMed ID: 18513158 [TBL] [Abstract][Full Text] [Related]
10. Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Meng G; Liu S; Li X; Krawetz R; Rancourt DE Stem Cells Dev; 2010 Apr; 19(4):547-56. PubMed ID: 19883201 [TBL] [Abstract][Full Text] [Related]
11. Growth of human embryonic stem cells using derivates of human fibroblasts. Escobedo-Lucea C; Stojkovic M Methods Mol Biol; 2010; 584():55-69. PubMed ID: 19907971 [TBL] [Abstract][Full Text] [Related]
12. CTG repeat instability in a human embryonic stem cell line carrying the myotonic dystrophy type 1 mutation. De Temmerman N; Seneca S; Van Steirteghem A; Haentjens P; Van der Elst J; Liebaers I; Sermon KD Mol Hum Reprod; 2008 Jul; 14(7):405-12. PubMed ID: 18577525 [TBL] [Abstract][Full Text] [Related]
13. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Allegrucci C; Wu YZ; Thurston A; Denning CN; Priddle H; Mummery CL; Ward-van Oostwaard D; Andrews PW; Stojkovic M; Smith N; Parkin T; Jones ME; Warren G; Yu L; Brena RM; Plass C; Young LE Hum Mol Genet; 2007 May; 16(10):1253-68. PubMed ID: 17409196 [TBL] [Abstract][Full Text] [Related]
14. Defined and serum-free media support undifferentiated human embryonic stem cell growth. Chin AC; Padmanabhan J; Oh SK; Choo AB Stem Cells Dev; 2010 Jun; 19(6):753-61. PubMed ID: 19686051 [TBL] [Abstract][Full Text] [Related]
15. Human embryonic fibroblasts support single cell enzymatic expansion of human embryonic stem cells in xeno-free cultures. Kibschull M; Mileikovsky M; Michael IP; Lye SJ; Nagy A Stem Cell Res; 2011 Jan; 6(1):70-82. PubMed ID: 20934930 [TBL] [Abstract][Full Text] [Related]
16. Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium. Losino N; Luzzani C; Solari C; Boffi J; Tisserand ML; Sevlever G; Barañao L; Guberman A Stem Cells Dev; 2011 Aug; 20(8):1439-49. PubMed ID: 21126164 [TBL] [Abstract][Full Text] [Related]
17. Three key variables involved in feeder preparation for the maintenance of human embryonic stem cells. Zhou D; Liu T; Zhou X; Lu G Cell Biol Int; 2009 Jul; 33(7):796-800. PubMed ID: 19393754 [TBL] [Abstract][Full Text] [Related]
18. Feeder-free culture of human embryonic stem cells for scalable expansion in a reproducible manner. Hernandez D; Ruban L; Mason C Stem Cells Dev; 2011 Jun; 20(6):1089-98. PubMed ID: 21142495 [TBL] [Abstract][Full Text] [Related]
19. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells. García CP; Videla Richardson GA; Romorini L; Miriuka SG; Sevlever GE; Scassa ME Stem Cell Res; 2014 Mar; 12(2):400-14. PubMed ID: 24380814 [TBL] [Abstract][Full Text] [Related]
20. Feeder-free culture of human embryonic stem cells. Amit M; Itskovitz-Eldor J Methods Enzymol; 2006; 420():37-49. PubMed ID: 17161692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]