These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26924069)

  • 1. Raman selection rule for surface optical phonons in ZnS nanobelts.
    Ho CH; Varadhan P; Wang HH; Chen CY; Fang X; He JH
    Nanoscale; 2016 Mar; 8(11):5954-8. PubMed ID: 26924069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Raman spectral probe on polar w-ZnS nanostructures and surface optical phonon modes in nanowires.
    Prasad N; Karthikeyan B
    Nanoscale; 2019 Mar; 11(11):4948-4958. PubMed ID: 30838362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets.
    Venugopal R; Lin PI; Liu CC; Chen YT
    J Am Chem Soc; 2005 Aug; 127(32):11262-8. PubMed ID: 16089453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.
    Schäfer-Nolte EO; Stoica T; Gotschke T; Limbach FA; Sutter E; Sutter P; Grützmacher D; Calarco R
    Nanotechnology; 2010 Aug; 21(31):315702. PubMed ID: 20634570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-resonant Raman scattering of wurtzite GaAs and InP nanowires.
    Vainorius N; Lehmann S; Dick KA; Pistol ME
    Opt Express; 2020 Apr; 28(8):11016-11022. PubMed ID: 32403621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman antenna effect from exciton-phonon coupling in organic semiconducting nanobelts.
    Wang M; Gong Y; Alzina F; Svoboda O; Ballesteros B; Sotomayor Torres CM; Xiao S; Zhang Z; He J
    Nanoscale; 2017 Dec; 9(48):19328-19336. PubMed ID: 29199314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface phonon modes in the [AlN/GaN]
    Sivadasan AK; Singha C; Bhattacharyya A; Dhara S
    Phys Chem Chem Phys; 2016 Nov; 18(43):29864-29870. PubMed ID: 27759132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Low-temperature-dependent characteristics of Raman scattering in N-type 4H-SiC].
    Miao RX; Zhao P; Liu WH; Tang XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):108-10. PubMed ID: 24783543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondestructive Characterizations of Au-Catalyzed GaAs Nanowires on GaAs(111)B Substrates via Identifications of 1st Order Optical Phonon Modes Using
    Park JH; Kim RS; Park SJ; Park GC; Chung CH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4358-4363. PubMed ID: 31968474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties.
    Shan CX; Liu Z; Zhang XT; Wong CC; Hark SK
    Nanotechnology; 2006 Nov; 17(22):5561-4. PubMed ID: 21727324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry dependence of the phonon modes in CdSe nanorods.
    Lange H; Artemyev M; Woggon U; Thomsen C
    Nanotechnology; 2009 Jan; 20(4):045705. PubMed ID: 19417331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic electron-photon-phonon coupling in layered MoS
    Kumar D; Singh B; Kumar R; Kumar M; Kumar P
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32512557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman scattering study of InAs nanowires under high pressure.
    Majumdar D; Basu A; Dev Mukherjee G; Ercolani D; Sorba L; Singha A
    Nanotechnology; 2014 Nov; 25(46):465704. PubMed ID: 25360514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Density and Diameter on Surface Optical Phonon Modes in GaAs Nanowire Bundles.
    Park JH; Kim RS; Park SJ; Chung CH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4444-4449. PubMed ID: 31968493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle-Dependent Raman Scattering Studies on Anisotropic Properties of Crystalline Hexagonal 4H-SiC.
    Feng ZC; Zhao D; Wan L; Lu W; Yiin J; Klein B; Ferguson IT
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals.
    Guc M; Levcenko S; Bodnar IV; Izquierdo-Roca V; Fontane X; Volkova LV; Arushanov E; Pérez-Rodríguez A
    Sci Rep; 2016 Jan; 6():19414. PubMed ID: 26776727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-Raman Spectroscopy in Self-Catalyzed Indium Phosphide Nanostructures: Morphology and Substrate Effects.
    Park JH; Kim RS; Pozuelo M; Chung CH
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2285-2290. PubMed ID: 30486983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and raman scattering from Zn(1-x)Mn(x)S diluted magnetic semiconductor nanowires.
    Wu J; Gutierrez HR; Eklund PC
    J Nanosci Nanotechnol; 2008 Jan; 8(1):393-9. PubMed ID: 18468089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent ultraviolet Raman scattering and anomalous Raman phenomenon of AlGaN/GaN heterostructure.
    Liu Y; Chen D; Wei G; Lin Z; He A; Li M; Wang P; Zhang R; Zheng Y
    Opt Express; 2019 Feb; 27(4):4781-4788. PubMed ID: 30876088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.