BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26924285)

  • 1. Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla.
    Barry RL; Rogers BP; Conrad BN; Smith SA; Gore JC
    Neuroimage; 2016 Jun; 133():31-40. PubMed ID: 26924285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting state functional connectivity in the human spinal cord.
    Barry RL; Smith SA; Dula AN; Gore JC
    Elife; 2014 Aug; 3():e02812. PubMed ID: 25097248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical protocol for measurements of spinal cord functional connectivity.
    Barry RL; Conrad BN; Smith SA; Gore JC
    Sci Rep; 2018 Nov; 8(1):16512. PubMed ID: 30410122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically organized resting state networks in the human spinal cord.
    Kong Y; Eippert F; Beckmann CF; Andersson J; Finsterbusch J; Büchel C; Tracey I; Brooks JC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18067-72. PubMed ID: 25472845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.
    San Emeterio Nateras O; Yu F; Muir ER; Bazan C; Franklin CG; Li W; Li J; Lancaster JL; Duong TQ
    Radiology; 2016 Apr; 279(1):262-8. PubMed ID: 26505923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of the intrinsic functional network in the cervical spinal cord: A resting state functional MRI study.
    Liu X; Zhou F; Li X; Qian W; Cui J; Zhou IY; Luk KD; Wu EX; Hu Y
    Neuroscience; 2016 Nov; 336():30-38. PubMed ID: 27590264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Coordinated Networks Across the Brainstem and Spinal Cord in the Resting State and Altered Cognitive State.
    Ioachim G; Powers JM; Stroman PW
    Brain Connect; 2019 Jun; 9(5):415-424. PubMed ID: 30909725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injury alters intrinsic functional connectivity within the primate spinal cord.
    Chen LM; Mishra A; Yang PF; Wang F; Gore JC
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5991-6. PubMed ID: 25902510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study.
    Rao JS; Ma M; Zhao C; Zhang AF; Yang ZY; Liu Z; Li XG
    Magn Reson Imaging; 2014 Jun; 32(5):482-6. PubMed ID: 24629510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal fMRI demonstrates segmental organisation of functionally connected networks in the cervical spinal cord: A test-retest reliability study.
    Kowalczyk OS; Medina S; Tsivaka D; McMahon SB; Williams SCR; Brooks JCW; Lythgoe DJ; Howard MA
    Hum Brain Mapp; 2024 Feb; 45(2):e26600. PubMed ID: 38339896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of functional connectivity in the resting mouse brain.
    Nasrallah FA; Tay HC; Chuang KH
    Neuroimage; 2014 Feb; 86():417-24. PubMed ID: 24157920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources.
    Kaptan M; Horn U; Vannesjo SJ; Mildner T; Weiskopf N; Finsterbusch J; Brooks JCW; Eippert F
    Neuroimage; 2023 Jul; 275():120152. PubMed ID: 37142169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease.
    Zhang HY; Wang SJ; Xing J; Liu B; Ma ZL; Yang M; Zhang ZJ; Teng GJ
    Behav Brain Res; 2009 Jan; 197(1):103-8. PubMed ID: 18786570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional connectivity of the insula in the resting brain.
    Cauda F; D'Agata F; Sacco K; Duca S; Geminiani G; Vercelli A
    Neuroimage; 2011 Mar; 55(1):8-23. PubMed ID: 21111053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can resting-state functional MRI serve as a complement to task-based mapping of sensorimotor function? A test-retest reliability study in healthy volunteers.
    Mannfolk P; Nilsson M; Hansson H; Ståhlberg F; Fransson P; Weibull A; Svensson J; Wirestam R; Olsrud J
    J Magn Reson Imaging; 2011 Sep; 34(3):511-7. PubMed ID: 21761469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting-state brain and spinal cord networks in humans are functionally integrated.
    Vahdat S; Khatibi A; Lungu O; Finsterbusch J; Büchel C; Cohen-Adad J; Marchand-Pauvert V; Doyon J
    PLoS Biol; 2020 Jul; 18(7):e3000789. PubMed ID: 32614823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Resting-State BOLD Networks in the Human Brainstem and Spinal Cord.
    Harita S; Ioachim G; Powers J; Stroman PW
    Neuroscience; 2019 Apr; 404():71-81. PubMed ID: 30776404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture.
    Kinany N; Pirondini E; Micera S; Van De Ville D
    Neuron; 2020 Nov; 108(3):424-435.e4. PubMed ID: 32910894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.