BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26924574)

  • 1. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics.
    Li Y
    Soft Matter; 2016 Apr; 12(13):3202-13. PubMed ID: 26924574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crumpling deformation regimes of monolayer graphene on substrate: a molecular mechanics study.
    Al-Mulla T; Qin Z; Buehler MJ
    J Phys Condens Matter; 2015 Sep; 27(34):345401. PubMed ID: 26252422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots.
    Chiang CW; Haider G; Tan WC; Liou YR; Lai YC; Ravindranath R; Chang HT; Chen YF
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):466-71. PubMed ID: 26696193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface.
    Chen W; Gui X; Liang B; Liu M; Lin Z; Zhu Y; Tang Z
    ACS Appl Mater Interfaces; 2016 May; 8(17):10977-84. PubMed ID: 27111911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Nanoscale Structuring of Solution-Processed 2D van der Waals Networks for Wafer-Scale, Stretchable Electronics.
    Rhee D; Han B; Jung M; Kim J; Song O; Kang J
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57153-57164. PubMed ID: 36519946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic buckling patterns of graphene/hexagonal boron nitride heterostructure.
    Zhang C; Song J; Yang Q
    Nanotechnology; 2014 Nov; 25(44):445401. PubMed ID: 25313162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation of wrinkled graphene.
    Li Z; Kinloch IA; Young RJ; Novoselov KS; Anagnostopoulos G; Parthenios J; Galiotis C; Papagelis K; Lu CY; Britnell L
    ACS Nano; 2015 Apr; 9(4):3917-25. PubMed ID: 25765609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-induced solvent intercalation for stable graphene doping.
    Kim HH; Yang JW; Jo SB; Kang B; Lee SK; Bong H; Lee G; Kim KS; Cho K
    ACS Nano; 2013 Feb; 7(2):1155-62. PubMed ID: 23368414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.
    Androulidakis C; Koukaras EN; Rahova J; Sampathkumar K; Parthenios J; Papagelis K; Frank O; Galiotis C
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26593-26601. PubMed ID: 28722403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEDOT:PSS/Grafted-PDMS Electrodes for Fully Organic and Intrinsically Stretchable Skin-like Electronics.
    Li G; Qiu Z; Wang Y; Hong Y; Wan Y; Zhang J; Yang J; Wu Z; Hong W; Guo CF
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10373-10379. PubMed ID: 30781948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Preparation of Highly Stretchable, Crack-Free Wrinkled Surfaces with Tunable Wetting and Optical Properties.
    Wang Q; Yu S; Ye Q; Yang B; Zhang Y; Wang X; Li L
    Langmuir; 2024 Jan; 40(4):2102-2110. PubMed ID: 38227966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics.
    Yan S; Zhang G; Jiang H; Li F; Zhang L; Xia Y; Wang Z; Wu Y; Li H
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10736-10744. PubMed ID: 30801171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A graphene meta-interface for enhancing the stretchability of brittle oxide layers.
    Won S; Jang JW; Choi HJ; Kim CH; Lee SB; Hwangbo Y; Kim KS; Yoon SG; Lee HJ; Kim JH; Lee SB
    Nanoscale; 2016 Mar; 8(9):4961-8. PubMed ID: 26540317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene.
    Zhang Y; Fu Q; Cui Y; Mu R; Jin L; Bao X
    Phys Chem Chem Phys; 2013 Nov; 15(43):19042-8. PubMed ID: 24096681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mastering the Wrinkling of Self-supported Graphene.
    Pacakova B; Verhagen T; Bousa M; Hübner U; Vejpravova J; Kalbac M; Frank O
    Sci Rep; 2017 Aug; 7(1):10003. PubMed ID: 28855558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material-Dependent Evolution of Mechanical Folding Instabilities in Two-Dimensional Atomic Membranes.
    Yu J; Kim S; Ertekin E; van der Zande AM
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10801-10808. PubMed ID: 32036649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices.
    Yoon T; Kim JH; Choi JH; Jung DY; Park IJ; Choi SY; Cho NS; Lee JI; Kwon YD; Cho S; Kim TS
    ACS Nano; 2016 Jan; 10(1):1539-45. PubMed ID: 26715053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate.
    Zhao X; Papageorgiou DG; Zhu L; Ding F; Young RJ
    Nanoscale; 2019 Aug; 11(30):14339-14353. PubMed ID: 31328739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maple Leaf Inspired Conductive Fiber with Hierarchical Wrinkles for Highly Stretchable and Integratable Electronics.
    Gao Y; Yu L; Li Y; Wei L; Yin J; Wang F; Wang L; Mao J
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49059-49071. PubMed ID: 36251510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials.
    Tripathi M; Lee F; Michail A; Anestopoulos D; McHugh JG; Ogilvie SP; Large MJ; Graf AA; Lynch PJ; Parthenios J; Papagelis K; Roy S; Saadi MASR; Rahman MM; Pugno NM; King AAK; Ajayan PM; Dalton AB
    ACS Nano; 2021 Feb; 15(2):2520-2531. PubMed ID: 33492930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.