These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26924659)

  • 1. A validated numerical model of a lower limb surrogate to investigate injuries caused by under-vehicle explosions.
    Newell N; Salzar R; Bull AMJ; Masouros SD
    J Biomech; 2016 Mar; 49(5):710-717. PubMed ID: 26924659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a booted finite element model of the WIAMan ATD lower limb in component and whole-body vertical loading impacts with an assessment of the boot influence model on response.
    Baker WA; Chowdhury MR; Untaroiu CD
    Traffic Inj Prev; 2018 Jul; 19(5):549-554. PubMed ID: 29381394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model of an anthropomorphic test device lower limb to assess risk of injuries during vertical accelerative loading.
    Baker WA; Chowdhury M; Untaroiu CD
    J Biomech; 2018 Nov; 81():104-112. PubMed ID: 30316546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blast effect on the lower extremities and its mitigation: a computational study.
    Dong L; Zhu F; Jin X; Suresh M; Jiang B; Sevagan G; Cai Y; Li G; Yang KH
    J Mech Behav Biomed Mater; 2013 Dec; 28():111-24. PubMed ID: 23973770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Anthropomorphic Test Device Lower Leg Surrogate Selection on Impact Mitigating System Evaluation in Low- and High-Rate Loading Conditions.
    Quenneville CE; Fournier E; Shewchenko N
    Mil Med; 2017 Sep; 182(9):e1981-e1986. PubMed ID: 28885966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the biofidelity of the HIII and MIL-Lx lower leg surrogates under axial impact loading.
    Quenneville CE; Dunning CE
    Traffic Inj Prev; 2012; 13(1):81-5. PubMed ID: 22239148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Axial Force Attenuation Characteristics in Two Different Lower Extremity Anthropomorphic Test Devices.
    Chirvi S; Pintar FA; Yoganandan N; Joseph McEntire B
    Mil Med; 2023 Nov; 188(11-12):e3447-e3453. PubMed ID: 37552649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Experimentally Validated Finite Element Model of the Lower Limb to Investigate the Efficacy of Blast Mitigation Systems.
    Rebelo EA; Grigoriadis G; Carpanen D; Bull AMJ; Masouros SD
    Front Bioeng Biotechnol; 2021; 9():665656. PubMed ID: 34164383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events.
    McKay BJ; Bir CA
    Stapp Car Crash J; 2009 Nov; 53():229-49. PubMed ID: 20058557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions.
    Chirvi S; Pintar F; Yoganandan N; Banerjee A; Schlick M; Curry W; Voo L
    Stapp Car Crash J; 2017 Nov; 61():157-173. PubMed ID: 29394438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of Military Lower Extremity and Hybrid III leg using the Hybrid III and EuroSID-2 ATD in vertical loading impacts.
    Pandelani T; Modungwa D
    Traffic Inj Prev; 2022; 23(5):250-254. PubMed ID: 35389297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower Extremity Response to Blast Loading: A Computational Study.
    Vikram A; Chawla A; Mukherjee S
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36511105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational assessment of leg response to extreme loadings using a detailed finite element model.
    Vikram A; Chawla A; Mukherjee S
    Int J Numer Method Biomed Eng; 2023 Dec; 39(12):e3768. PubMed ID: 37605360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading.
    Butz K; Spurlock C; Roy R; Bell C; Barrett P; Ward A; Xiao X; Shirley A; Welch C; Lister K
    Stapp Car Crash J; 2017 Nov; 61():175-209. PubMed ID: 29394439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.
    Sevagan G; Zhu F; Jiang B; Yang KH
    Proc Inst Mech Eng H; 2013 Jul; 227(7):778-87. PubMed ID: 23636759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical Evaluations of Ocular Injury Risk for Blast Loading.
    Notghi B; Bhardwaj R; Bailoor S; Thompson KA; Weaver AA; Stitzel JD; Nguyen TD
    J Biomech Eng; 2017 Aug; 139(8):. PubMed ID: 28617927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of impact duration on the axial fracture tolerance of the isolated tibia during automotive and military impacts.
    Martinez AA; Chakravarty AB; Quenneville CE
    J Mech Behav Biomed Mater; 2018 Feb; 78():315-320. PubMed ID: 29197302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower Limb Posture Affects the Mechanism of Injury in Under-Body Blast.
    Grigoriadis G; Carpanen D; Webster CE; Ramasamy A; Newell N; Masouros SD
    Ann Biomed Eng; 2019 Jan; 47(1):306-316. PubMed ID: 30276492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underbody blast effect on the pelvis and lumbar spine: A computational study.
    Lei J; Zhu F; Jiang B; Wang Z
    J Mech Behav Biomed Mater; 2018 Mar; 79():9-19. PubMed ID: 29248744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severe Calcaneus Injury Probability Curves Due to Under-Body Blast.
    Voo L; Ott K; Metzger T; Merkle A; Drewry D
    Ann Biomed Eng; 2021 Nov; 49(11):3118-3127. PubMed ID: 34117584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.