These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26924776)

  • 41. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis.
    Cong N; Wang T; Nan H; Ma Y; Wang X; Myneni RB; Piao S
    Glob Chang Biol; 2013 Mar; 19(3):881-91. PubMed ID: 23504844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
    Liang S; Shi P; Li H
    Int J Biometeorol; 2016 Apr; 60(4):531-44. PubMed ID: 26272052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia.
    Wu L; Ma X; Dou X; Zhu J; Zhao C
    Sci Total Environ; 2021 Nov; 796():149055. PubMed ID: 34328878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011.
    Barichivich J; Briffa KR; Myneni RB; Osborn TJ; Melvin TM; Ciais P; Piao S; Tucker C
    Glob Chang Biol; 2013 Oct; 19(10):3167-83. PubMed ID: 23749553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies.
    Wang H; Tetzlaff D; Buttle J; Carey SK; Laudon H; McNamara JP; Spence C; Soulsby C
    Sci Total Environ; 2019 Mar; 656():19-28. PubMed ID: 30502731
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Spatiotemporal variation of vegetation phenology in the Daxing'an Mountains stratified by eco-geographical regions.].
    Fu YY; Zhao JJ; Zhang HY; He HS; Guo XY
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2797-2806. PubMed ID: 29732841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data.
    Yang B; He M; Shishov V; Tychkov I; Vaganov E; Rossi S; Ljungqvist FC; Bräuning A; Grießinger J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6966-6971. PubMed ID: 28630302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discrepancies in vegetation phenology trends and shift patterns in different climatic zones in middle and eastern Eurasia between 1982 and 2015.
    Li Y; Zhang Y; Gu F; Liu S
    Ecol Evol; 2019 Aug; 9(15):8664-8675. PubMed ID: 31410270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity.
    Zhu L; Southworth J; Meng J
    Int J Biometeorol; 2015 Oct; 59(10):1373-84. PubMed ID: 25542243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Response of vegetation phenology to urbanization in urban agglomeration areas: A dynamic urban-rural gradient perspective.
    Liu Z; Zhou Y; Feng Z
    Sci Total Environ; 2023 Mar; 864():161109. PubMed ID: 36566859
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau.
    Shen M; Piao S; Cong N; Zhang G; Jassens IA
    Glob Chang Biol; 2015 Oct; 21(10):3647-56. PubMed ID: 25926356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of aspect on phenology of Larix gmelinii forest in Northeast China.
    Dong C; Qiao R; Chang X
    Sci Rep; 2022 Dec; 12(1):22177. PubMed ID: 36550181
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The confounding effect of snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau.
    Huang K; Zhang Y; Tagesson T; Brandt M; Wang L; Chen N; Zu J; Jin H; Cai Z; Tong X; Cong N; Fensholt R
    Sci Total Environ; 2021 Feb; 756():144011. PubMed ID: 33316646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defining functional biomes and monitoring their change globally.
    Higgins SI; Buitenwerf R; Moncrieff GR
    Glob Chang Biol; 2016 Nov; 22(11):3583-3593. PubMed ID: 27207728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982-2013.
    Xu HJ; Wang XP; Yang TB
    Sci Total Environ; 2017 Feb; 579():1658-1674. PubMed ID: 27919557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inner Mongolian grassland plant phenological changes and their climatic drivers.
    Wang G; Huang Y; Wei Y; Zhang W; Li T; Zhang Q
    Sci Total Environ; 2019 Sep; 683():1-8. PubMed ID: 31125849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.
    Schut AG; Ivits E; Conijn JG; Ten Brink B; Fensholt R
    PLoS One; 2015; 10(10):e0138013. PubMed ID: 26466347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climate-associated changes in spring plant phenology in China.
    Ma T; Zhou C
    Int J Biometeorol; 2012 Mar; 56(2):269-75. PubMed ID: 21484539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation.
    Ghosh S; Nandy S; Mohanty S; Subba R; Kushwaha SPS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):786. PubMed ID: 31989274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.