BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26924811)

  • 1. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.
    Verberk WC; Durance I; Vaughan IP; Ormerod SJ
    Glob Chang Biol; 2016 May; 22(5):1769-78. PubMed ID: 26924811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
    Verberk WC; Overgaard J; Ern R; Bayley M; Wang T; Boardman L; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Feb; 192():64-78. PubMed ID: 26506130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming.
    Dudgeon D; Ng LCY; Tsang TPN
    Glob Chang Biol; 2020 Nov; 26(11):6399-6412. PubMed ID: 32866325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological responses to short-term thermal stress in mayfly (
    Kim KS; Chou H; Funk DH; Jackson JK; Sweeney BW; Buchwalter DB
    J Exp Biol; 2017 Jul; 220(Pt 14):2598-2605. PubMed ID: 28724704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory control in aquatic insects dictates their vulnerability to global warming.
    Verberk WC; Bilton DT
    Biol Lett; 2013 Oct; 9(5):20130473. PubMed ID: 23925834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term forecast of thermal mortality with climate warming in riverine amphipods.
    Verberk WCEP; Hoefnagel KN; Peralta-Maraver I; Floury M; Rezende EL
    Glob Chang Biol; 2023 Sep; 29(17):5033-5043. PubMed ID: 37401451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies.
    Shah AA; Woods HA; Havird JC; Encalada AC; Flecker AS; Funk WC; Guayasamin JM; Kondratieff BC; Poff NL; Thomas SA; Zamudio KR; Ghalambor CK
    Glob Chang Biol; 2021 Jan; 27(2):297-311. PubMed ID: 33064866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of changing climate on European stream invertebrate communities: A long-term data analysis.
    Jourdan J; O'Hara RB; Bottarin R; Huttunen KL; Kuemmerlen M; Monteith D; Muotka T; Ozoliņš D; Paavola R; Pilotto F; Springe G; Skuja A; Sundermann A; Tonkin JD; Haase P
    Sci Total Environ; 2018 Apr; 621():588-599. PubMed ID: 29195206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of experimental warming on two tropical Andean aquatic insects.
    Gallegos-Sánchez S; Domínguez E; Encalada AC; Ríos-Touma B
    PLoS One; 2022; 17(7):e0271256. PubMed ID: 35895667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air temperatures over-predict changes to stream fish assemblages with climate warming compared with water temperatures.
    Kirk MA; Rahel FJ
    Ecol Appl; 2022 Jan; 32(1):e02465. PubMed ID: 34614252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States.
    Pyne MI; Poff NL
    Glob Chang Biol; 2017 Jan; 23(1):77-93. PubMed ID: 27429092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.
    Lawrence DJ; Stewart-Koster B; Olden JD; Ruesch AS; Torgersen CE; Lawler JJ; Butcher DP; Crown JK
    Ecol Appl; 2014 Jun; 24(4):895-912. PubMed ID: 24988784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal changes in the critical thermal maxima of four species of aquatic insects (Ephemeroptera, Trichoptera).
    Houghton DC; Shoup L
    Environ Entomol; 2014 Aug; 43(4):1059-66. PubMed ID: 25182620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do aquatic ectotherms perform better under hypoxia after warm acclimation?
    Collins M; Truebano M; Verberk WCEP; Spicer JI
    J Exp Biol; 2021 Feb; 224(Pt 3):. PubMed ID: 33542094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms.
    Huey RB; Kingsolver JG
    Am Nat; 2019 Dec; 194(6):E140-E150. PubMed ID: 31738103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms.
    Rubalcaba JG; Verberk WCEP; Hendriks AJ; Saris B; Woods HA
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31963-31968. PubMed ID: 33257544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.
    Lyons J; Stewart JS; Mitro M
    J Fish Biol; 2010 Nov; 77(8):1867-98. PubMed ID: 21078096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E; Prado SG; Keleher KJ; Kirchner M
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-cumulative effects of neonicotinoid exposure, heatwaves and food limitation on stream mayfly nymphs: A multiple-stressor experiment.
    Macaulay SJ; Hageman KJ; Piggott JJ; Matthaei CD
    Sci Total Environ; 2021 Feb; 754():141941. PubMed ID: 33254881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.