These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26924824)
61. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction. Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048 [TBL] [Abstract][Full Text] [Related]
62. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
63. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757 [TBL] [Abstract][Full Text] [Related]
64. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering. Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745 [TBL] [Abstract][Full Text] [Related]
65. 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. Steffens D; Rezende RA; Santi B; Pereira FD; Inforçatti Neto P; da Silva JV; Pranke P J Appl Biomater Funct Mater; 2016 Apr; 14(1):e19-25. PubMed ID: 26660628 [TBL] [Abstract][Full Text] [Related]
66. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
67. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Costa PF; Puga AM; Díaz-Gomez L; Concheiro A; Busch DH; Alvarez-Lorenzo C Int J Pharm; 2015 Dec; 496(2):541-50. PubMed ID: 26520408 [TBL] [Abstract][Full Text] [Related]
68. Sol-gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. Goudouri OM; Vogel C; Grünewald A; Detsch R; Kontonasaki E; Boccaccini AR J Biomater Appl; 2016 Jan; 30(6):740-9. PubMed ID: 25972398 [TBL] [Abstract][Full Text] [Related]
69. PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Higuera GA; Ramos T; Gloria A; Ambrosio L; Di Luca A; Pechkov N; de Wijn JR; van Blitterswijk CA; Moroni L Front Bioeng Biotechnol; 2021; 9():704185. PubMed ID: 34595158 [TBL] [Abstract][Full Text] [Related]
70. Modifying the strength and strain concentration profile within collagen scaffolds using customizable arrays of poly-lactic acid fibers. Mozdzen LC; Vucetic A; Harley BAC J Mech Behav Biomed Mater; 2017 Feb; 66():28-36. PubMed ID: 27829193 [TBL] [Abstract][Full Text] [Related]
71. Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering. Mouthuy PA; Ye H; Triffitt J; Oommen G; Cui Z Proc Inst Mech Eng H; 2010 Dec; 224(12):1401-14. PubMed ID: 21287828 [TBL] [Abstract][Full Text] [Related]
72. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767 [TBL] [Abstract][Full Text] [Related]
73. Enhanced bone marrow stromal cell adhesion and growth on segmented poly(ether ester)s based on poly(ethylene oxide) and poly(butylene terephthalate). Claase MB; Olde Riekerink MB; de Bruijn JD; Grijpma DW; Engbers GH; Feijen J Biomacromolecules; 2003; 4(1):57-63. PubMed ID: 12523847 [TBL] [Abstract][Full Text] [Related]
74. Net shape fabrication of calcium phosphate scaffolds with multiple material domains. Xie Y; Rustom LE; McDermott AM; Boerckel JD; Johnson AJ; Alleyne AG; Hoelzle DJ Biofabrication; 2016 Jan; 8(1):015005. PubMed ID: 26744897 [TBL] [Abstract][Full Text] [Related]
75. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review. de Misquita MR; Bentini R; Goncalves F J Biomater Appl; 2016 Nov; 31(5):625-636. PubMed ID: 27334129 [TBL] [Abstract][Full Text] [Related]
76. Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. Deschamps AA; Claase MB; Sleijster WJ; de Bruijn JD; Grijpma DW; Feijen J J Control Release; 2002 Jan; 78(1-3):175-86. PubMed ID: 11772459 [TBL] [Abstract][Full Text] [Related]
77. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication. Marrella A; Aiello M; Quarto R; Scaglione S Biotechnol Bioeng; 2016 Oct; 113(10):2286-97. PubMed ID: 27093435 [TBL] [Abstract][Full Text] [Related]
78. From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds. Herrera A; Hellwig J; Leemhuis H; von Klitzing R; Heschel I; Duda GN; Petersen A Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109760. PubMed ID: 31349443 [TBL] [Abstract][Full Text] [Related]