These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26924825)
21. Injection molded polymeric micropatterns for bone regeneration study. Zanchetta E; Guidi E; Della Giustina G; Sorgato M; Krampera M; Bassi G; Di Liddo R; Lucchetta G; Conconi MT; Brusatin G ACS Appl Mater Interfaces; 2015 Apr; 7(13):7273-81. PubMed ID: 25756304 [TBL] [Abstract][Full Text] [Related]
22. Biomimetic 3D tissue printing for soft tissue regeneration. Pati F; Ha DH; Jang J; Han HH; Rhie JW; Cho DW Biomaterials; 2015 Sep; 62():164-75. PubMed ID: 26056727 [TBL] [Abstract][Full Text] [Related]
23. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
24. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Luo Y; Wu C; Lode A; Gelinsky M Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479 [TBL] [Abstract][Full Text] [Related]
26. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment. Yousefi AM; Smucker B; Naber A; Wyrick C; Shaw C; Bennett K; Szekely S; Focke C; Wood KA J Biomater Sci Polym Ed; 2018 Feb; 29(3):195-216. PubMed ID: 29161997 [TBL] [Abstract][Full Text] [Related]
27. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J Biofabrication; 2016 Mar; 8(1):015016. PubMed ID: 26930179 [TBL] [Abstract][Full Text] [Related]
28. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Kozłowska J; Sionkowska A Int J Biol Macromol; 2015 Mar; 74():397-403. PubMed ID: 25542169 [TBL] [Abstract][Full Text] [Related]
29. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813 [TBL] [Abstract][Full Text] [Related]
30. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Suchý T; Šupová M; Sauerová P; Verdánová M; Sucharda Z; Rýglová Š; Žaloudková M; Sedláček R; Kalbáčová MH Biomed Mater; 2015 Nov; 10(6):065008. PubMed ID: 26586611 [TBL] [Abstract][Full Text] [Related]
31. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Kane RJ; Weiss-Bilka HE; Meagher MJ; Liu Y; Gargac JA; Niebur GL; Wagner DR; Roeder RK Acta Biomater; 2015 Apr; 17():16-25. PubMed ID: 25644451 [TBL] [Abstract][Full Text] [Related]
33. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
34. Computer aided biomanufacturing of mechanically robust pure collagen meshes with controlled macroporosity. Islam A; Chapin K; Younesi M; Akkus O Biofabrication; 2015 Jul; 7(3):035005. PubMed ID: 26200002 [TBL] [Abstract][Full Text] [Related]
35. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576 [TBL] [Abstract][Full Text] [Related]
36. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds. Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477 [TBL] [Abstract][Full Text] [Related]
37. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
38. Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Jiang Y; Chen L; Zhang S; Tong T; Zhang W; Liu W; Xu G; Tuan RS; Heng BC; Crawford R; Xiao Y; Ouyang HW Acta Biomater; 2013 Sep; 9(9):8089-98. PubMed ID: 23707501 [TBL] [Abstract][Full Text] [Related]
39. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold. Arahira T; Todo M J Mech Behav Biomed Mater; 2014 Nov; 39():218-30. PubMed ID: 25146676 [TBL] [Abstract][Full Text] [Related]
40. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]