These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26924825)
41. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. Huang GP; Shanmugasundaram S; Masih P; Pandya D; Amara S; Collins G; Arinzeh TL J Biomed Mater Res A; 2015 Feb; 103(2):762-71. PubMed ID: 24828818 [TBL] [Abstract][Full Text] [Related]
42. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering. Yu HS; Jin GZ; Won JE; Wall I; Kim HW J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478 [TBL] [Abstract][Full Text] [Related]
43. Porous ovalbumin scaffolds with tunable properties: a resource-efficient biodegradable material for tissue engineering applications. Luo B; Choong C J Biomater Appl; 2015 Jan; 29(6):903-11. PubMed ID: 25158688 [TBL] [Abstract][Full Text] [Related]
44. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Xu T; Miszuk JM; Zhao Y; Sun H; Fong H Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611 [TBL] [Abstract][Full Text] [Related]
45. Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction. Yang JZ; Hu XZ; Sultana R; Edward Day R; Ichim P Biomed Mater; 2015 Jul; 10(4):045006. PubMed ID: 26154898 [TBL] [Abstract][Full Text] [Related]
46. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Leferink AM; Santos D; Karperien M; Truckenmüller RK; van Blitterswijk CA; Moroni L Integr Biol (Camb); 2015 Dec; 7(12):1574-86. PubMed ID: 26566169 [TBL] [Abstract][Full Text] [Related]
47. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues. Zhang X; Meng Z; Ma J; Shi Y; Xu H; Lykkemark S; Qin J Small; 2015 Aug; 11(30):3666-75. PubMed ID: 25920010 [TBL] [Abstract][Full Text] [Related]
48. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related]
49. Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering. D'Amora U; D'Este M; Eglin D; Safari F; Sprecher CM; Gloria A; De Santis R; Alini M; Ambrosio L J Tissue Eng Regen Med; 2018 Feb; 12(2):321-329. PubMed ID: 28486746 [TBL] [Abstract][Full Text] [Related]
50. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451 [TBL] [Abstract][Full Text] [Related]
51. Development of 3D printed fibrillar collagen scaffold for tissue engineering. Nocera AD; Comín R; Salvatierra NA; Cid MP Biomed Microdevices; 2018 Feb; 20(2):26. PubMed ID: 29484567 [TBL] [Abstract][Full Text] [Related]
52. Bone regeneration on computer-designed nano-fibrous scaffolds. Chen VJ; Smith LA; Ma PX Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086 [TBL] [Abstract][Full Text] [Related]
53. Net shape fabrication of calcium phosphate scaffolds with multiple material domains. Xie Y; Rustom LE; McDermott AM; Boerckel JD; Johnson AJ; Alleyne AG; Hoelzle DJ Biofabrication; 2016 Jan; 8(1):015005. PubMed ID: 26744897 [TBL] [Abstract][Full Text] [Related]
55. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Guerrero J; Catros S; Derkaoui SM; Lalande C; Siadous R; Bareille R; Thébaud N; Bordenave L; Chassande O; Le Visage C; Letourneur D; Amédée J Acta Biomater; 2013 Sep; 9(9):8200-13. PubMed ID: 23743130 [TBL] [Abstract][Full Text] [Related]
56. Construction of biocompatible porous tissue scaffold from the decellularized umbilical artery. Xin Y; Wu G; Wu M; Zhang X; Velot E; Decot V; Cui W; Huang Y; Stoltz JF; Du J; Li N Biomed Mater Eng; 2015; 25(1 Suppl):65-71. PubMed ID: 25538057 [TBL] [Abstract][Full Text] [Related]
57. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
58. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
59. Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Huang C; Ogawa R Tissue Eng Part A; 2012 Oct; 18(19-20):2106-13. PubMed ID: 22607391 [TBL] [Abstract][Full Text] [Related]
60. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication. Marrella A; Aiello M; Quarto R; Scaglione S Biotechnol Bioeng; 2016 Oct; 113(10):2286-97. PubMed ID: 27093435 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]