These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26924856)
21. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H Sandford SA; Bernstein MP; Materese CK Astrophys J Suppl Ser; 2013; 205(1):. PubMed ID: 26435553 [TBL] [Abstract][Full Text] [Related]
22. Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. Allamandola LJ; Hudgins DM; Sandford SA Astrophys J; 1999 Feb; 511(2 Pt 2):L115-9. PubMed ID: 11542234 [TBL] [Abstract][Full Text] [Related]
23. Direct spectroscopic evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium. Sloan GC; Hayward TL; Allamandola LJ; Bregman JD; DeVito B; Hudgins DM Astrophys J; 1999 Mar; 513(1 Pt 2):L65-8. PubMed ID: 11543061 [TBL] [Abstract][Full Text] [Related]
24. The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life. Ziurys LM Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12274-9. PubMed ID: 16894164 [TBL] [Abstract][Full Text] [Related]
25. The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium. Sandford SA; Allamandola LJ; Tielens AG; Sellgren K; Tapia M; Pendleton Y Astrophys J; 1991 Apr; 371():607-20. PubMed ID: 11538103 [TBL] [Abstract][Full Text] [Related]
26. The synthesis of organic and inorganic compounds in evolved stars. Kwok S Nature; 2004 Aug; 430(7003):985-91. PubMed ID: 15329712 [TBL] [Abstract][Full Text] [Related]
27. Detection of C60 and C70 in a young planetary nebula. Cami J; Bernard-Salas J; Peeters E; Malek SE Science; 2010 Sep; 329(5996):1180-2. PubMed ID: 20651118 [TBL] [Abstract][Full Text] [Related]
28. Spatial variations of the 3 micron emission features within UV-excited nebulae: photochemical evolution of interstellar polycyclic aromatic hydrocarbons. Geballe TR; Tielens AG; Allamandola LJ; Moorhouse A; Brand PW Astrophys J; 1989 Jun; 341(1 Pt 1):278-87. PubMed ID: 11542168 [TBL] [Abstract][Full Text] [Related]
29. Near-infrared spectroscopy of the proto-planetary nebula CRL 618 and the origin of the hydrocarbon dust component in the interstellar medium. Chiar JE; Pendleton YJ; Geballe TR; Tielens AG Astrophys J; 1998 Nov; 507(1 Pt 1):281-6. PubMed ID: 11542820 [TBL] [Abstract][Full Text] [Related]
30. Studies of dust grain properties in infrared reflection nebulae. Pendleton YJ; Tielens AG; Werner MW Astrophys J; 1990 Jan; 349(1):107-19. PubMed ID: 11538693 [TBL] [Abstract][Full Text] [Related]
32. Insoluble organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. Wdowiak TJ; Flickinger GC; Cronin JR Astrophys J; 1988 May; 328(2):L75-9. PubMed ID: 11538467 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition-Dehydrocyclization: The Third Way. Zhao L; Prendergast MB; Kaiser RI; Xu B; Ablikim U; Ahmed M; Sun BJ; Chen YL; Chang AHH; Mohamed RK; Fischer FR Angew Chem Int Ed Engl; 2019 Nov; 58(48):17442-17450. PubMed ID: 31482662 [TBL] [Abstract][Full Text] [Related]
34. Polycyclic aromatic hydrocarbons in samples of Ryugu formed in the interstellar medium. Zeichner SS; Aponte JC; Bhattacharjee S; Dong G; Hofmann AE; Dworkin JP; Glavin DP; Elsila JE; Graham HV; Naraoka H; Takano Y; Tachibana S; Karp AT; Grice K; Holman AI; Freeman KH; Yurimoto H; Nakamura T; Noguchi T; Okazaki R; Yabuta H; Sakamoto K; Yada T; Nishimura M; Nakato A; Miyazaki A; Yogata K; Abe M; Okada T; Usui T; Yoshikawa M; Saiki T; Tanaka S; Terui F; Nakazawa S; Watanabe SI; Tsuda Y; Hamase K; Fukushima K; Aoki D; Hashiguchi M; Mita H; Chikaraishi Y; Ohkouchi N; Ogawa NO; Sakai S; Parker ET; McLain HL; Orthous-Daunay FR; Vuitton V; Wolters C; Schmitt-Kopplin P; Hertkorn N; Thissen R; Ruf A; Isa J; Oba Y; Koga T; Yoshimura T; Araoka D; Sugahara H; Furusho A; Furukawa Y; Aoki J; Kano K; Nomura SM; Sasaki K; Sato H; Yoshikawa T; Tanaka S; Morita M; Onose M; Kabashima F; Fujishima K; Yamazaki T; Kimura Y; Eiler JM Science; 2023 Dec; 382(6677):1411-1416. PubMed ID: 38127762 [TBL] [Abstract][Full Text] [Related]
35. The prebiotic molecules observed in the interstellar gas. Thaddeus P Philos Trans R Soc Lond B Biol Sci; 2006 Oct; 361(1474):1681-7. PubMed ID: 17008209 [TBL] [Abstract][Full Text] [Related]
36. Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Shock EL; Schulte MD Nature; 1990 Feb; 343(6260):728-31. PubMed ID: 11536464 [TBL] [Abstract][Full Text] [Related]
37. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants. Schutte WA; Tielens AG Astrophys J; 1989 Aug; 343(1):369-92. PubMed ID: 11538346 [TBL] [Abstract][Full Text] [Related]
38. An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga). Morrison SM; Hazen RM Am Mineral; 2020 Oct; 105(10):1508-1535. PubMed ID: 33958805 [TBL] [Abstract][Full Text] [Related]
39. Hydrogenation of PAH molecules through interaction with hydrogenated carbonaceous grains. Thrower JD; Friis EE; Skov AL; Jørgensen B; Hornekær L Phys Chem Chem Phys; 2014 Feb; 16(8):3381-7. PubMed ID: 24270708 [TBL] [Abstract][Full Text] [Related]