BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26924959)

  • 21. Decoding expectation and surprise in dementia: the paradigm of music.
    Benhamou E; Zhao S; Sivasathiaseelan H; Johnson JCS; Requena-Komuro MC; Bond RL; van Leeuwen JEP; Russell LL; Greaves CV; Nelson A; Nicholas JM; Hardy CJD; Rohrer JD; Warren JD
    Brain Commun; 2021; 3(3):fcab173. PubMed ID: 34423301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Talker discontinuity disrupts attention to speech: Evidence from EEG and pupillometry.
    Lim SJ; Carter YD; Njoroge JM; Shinn-Cunningham BG; Perrachione TK
    Brain Lang; 2021 Oct; 221():104996. PubMed ID: 34358924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsaccadic Eye Movements but not Pupillary Dilation Response Characterizes the Crossmodal Freezing Effect.
    Chen L; Liao HI
    Cereb Cortex Commun; 2020; 1(1):tgaa072. PubMed ID: 34296132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Musical and Bodily Predictors of Mental Effort in String Quartet Music: An Ecological Pupillometry Study of Performers and Listeners.
    Bishop L; Jensenius AR; Laeng B
    Front Psychol; 2021; 12():653021. PubMed ID: 34262504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pupillary dilation response reflects surprising moments in music.
    Liao HI; Yoneya M; Kashino M; Furukawa S
    J Eye Mov Res; 2018 Dec; 11(2):. PubMed ID: 33828696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns.
    Fink LK; Hurley BK; Geng JJ; Janata P
    J Eye Mov Res; 2018 Nov; 11(2):. PubMed ID: 33828695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inter- and intra-individual coupling between pupillary, electrophysiological, and behavioral responses in a visual oddball task.
    LoTemplio S; Silcox J; Federmeier KD; Payne BR
    Psychophysiology; 2021 Apr; 58(4):e13758. PubMed ID: 33347634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pupil size changes signal hippocampus-related memory functions.
    Pajkossy P; Szőllősi Á; Racsmány M
    Sci Rep; 2020 Oct; 10(1):16393. PubMed ID: 33009460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pupil Size as a Window on Neural Substrates of Cognition.
    Joshi S; Gold JI
    Trends Cogn Sci; 2020 Jun; 24(6):466-480. PubMed ID: 32331857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isometric exercise facilitates attention to salient events in women via the noradrenergic system.
    Mather M; Huang R; Clewett D; Nielsen SE; Velasco R; Tu K; Han S; Kennedy BL
    Neuroimage; 2020 Apr; 210():116560. PubMed ID: 31978545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eye pupil signals information gain.
    Zénon A
    Proc Biol Sci; 2019 Sep; 286(1911):20191593. PubMed ID: 31530143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Pupillary Response to the Unknown: Novelty Versus Familiarity.
    Beukema S; Jennings BJ; Olson JA; Kingdom FAA
    Iperception; 2019; 10(5):2041669519874817. PubMed ID: 31523417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences.
    Zhao S; Chait M; Dick F; Dayan P; Furukawa S; Liao HI
    Nat Commun; 2019 Sep; 10(1):4030. PubMed ID: 31492881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. With an eye on uncertainty: Modelling pupillary responses to environmental volatility.
    Vincent P; Parr T; Benrimoh D; Friston KJ
    PLoS Comput Biol; 2019 Jul; 15(7):e1007126. PubMed ID: 31276488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical modulation of pupillary function: systematic review.
    Peinkhofer C; Knudsen GM; Moretti R; Kondziella D
    PeerJ; 2019; 7():e6882. PubMed ID: 31119083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pupil-Linked Arousal Responds to Unconscious Surprisal.
    Alamia A; VanRullen R; Pasqualotto E; Mouraux A; Zenon A
    J Neurosci; 2019 Jul; 39(27):5369-5376. PubMed ID: 31061089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finger Temperature: A Psychophysiological Assessment of the Attentional State.
    Vergara RC; Moënne-Loccoz C; Ávalos C; Egaña J; Maldonado PE
    Front Hum Neurosci; 2019; 13():66. PubMed ID: 30949037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Context Dependence Signature, Stimulus Properties and Stimulus Probability as Predictors of ERP Amplitude Variability.
    Mugruza-Vassallo C; Potter D
    Front Hum Neurosci; 2019; 13():39. PubMed ID: 30863293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eye activity tracks task-relevant structures during speech and auditory sequence perception.
    Jin P; Zou J; Zhou T; Ding N
    Nat Commun; 2018 Dec; 9(1):5374. PubMed ID: 30560906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Anatomy of Inference: Generative Models and Brain Structure.
    Parr T; Friston KJ
    Front Comput Neurosci; 2018; 12():90. PubMed ID: 30483088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.