These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26925172)
1. Improved Efficiency for Partial Oxidation of Methane by Controlled Copper Deposition on Surface-Modified ZSM-5. Sheppard T; Daly H; Goguet A; Thompson JM ChemCatChem; 2016 Feb; 8(3):562-570. PubMed ID: 26925172 [TBL] [Abstract][Full Text] [Related]
2. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370 [TBL] [Abstract][Full Text] [Related]
3. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
4. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Alayon EM; Nachtegaal M; Bodi A; Ranocchiari M; van Bokhoven JA Phys Chem Chem Phys; 2015 Mar; 17(12):7681-93. PubMed ID: 25732559 [TBL] [Abstract][Full Text] [Related]
5. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626 [TBL] [Abstract][Full Text] [Related]
6. Cu Jin J; Li W; Zhang L; Zhu L; Wang L; Zhou Z J Colloid Interface Sci; 2023 Sep; 645():964-973. PubMed ID: 37182328 [TBL] [Abstract][Full Text] [Related]
7. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
8. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. Smeets PJ; Hadt RG; Woertink JS; Vanelderen P; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2010 Oct; 132(42):14736-8. PubMed ID: 20923156 [TBL] [Abstract][Full Text] [Related]
9. Transition-metal ions in zeolites: coordination and activation of oxygen. Smeets PJ; Woertink JS; Sels BF; Solomon EI; Schoonheydt RA Inorg Chem; 2010 Apr; 49(8):3573-83. PubMed ID: 20380459 [TBL] [Abstract][Full Text] [Related]
10. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431 [TBL] [Abstract][Full Text] [Related]
11. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. Yoshizawa K; Shiota Y J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545 [TBL] [Abstract][Full Text] [Related]
12. The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-5 Catalysts. Armstrong RD; Peneau V; Ritterskamp N; Kiely CJ; Taylor SH; Hutchings GJ Chemphyschem; 2018 Feb; 19(4):469-478. PubMed ID: 29193556 [TBL] [Abstract][Full Text] [Related]
13. Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-vis-near-IR, and kinetic study. Groothaert MH; van Bokhoven JA; Battiston AA; Weckhuysen BM; Schoonheydt RA J Am Chem Soc; 2003 Jun; 125(25):7629-40. PubMed ID: 12812505 [TBL] [Abstract][Full Text] [Related]
14. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Adeyiga O; Odoh SO Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957 [TBL] [Abstract][Full Text] [Related]
15. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Baek J; Rungtaweevoranit B; Pei X; Park M; Fakra SC; Liu YS; Matheu R; Alshmimri SA; Alshehri S; Trickett CA; Somorjai GA; Yaghi OM J Am Chem Soc; 2018 Dec; 140(51):18208-18216. PubMed ID: 30525562 [TBL] [Abstract][Full Text] [Related]
17. Copper Sites in Copper-Exchanged ZSM-5 for CO Activation and Methanol Synthesis: XPS and FTIR Studies. Chen HY; Chen L; Lin J; Tan KL; Li J Inorg Chem; 1997 Mar; 36(7):1417-1423. PubMed ID: 11669721 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient NO Abatement over Cu-ZSM-5 with Special Nanosheet Features. Wang H; Jia J; Liu S; Chen H; Wei Y; Wang Z; Zheng L; Wang Z; Zhang R Environ Sci Technol; 2021 Apr; 55(8):5422-5434. PubMed ID: 33720690 [TBL] [Abstract][Full Text] [Related]
19. Molecular Approach to Generate Cu(II) Sites on Silica for the Selective Partial Oxidation of Methane. Meyet J; Newton MA; van Bokhoven JA; Copéret C Chimia (Aarau); 2020 Apr; 74(4):237-240. PubMed ID: 32331539 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insight into the effect of active site motif structures on direct oxidation of methane to methanol over Cu-ZSM-5. Dai C; Zhang Y; Liu N; Yu G; Wang N; Xu R; Chen B Phys Chem Chem Phys; 2023 Sep; 25(36):24894-24903. PubMed ID: 37681261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]