These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26925350)

  • 1. Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions.
    McCreery RL
    Beilstein J Nanotechnol; 2016; 7():32-46. PubMed ID: 26925350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-Based Molecular Junctions for Practical Molecular Electronics.
    McCreery RL
    Acc Chem Res; 2022 Oct; 55(19):2766-2779. PubMed ID: 36137180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions.
    Morteza Najarian A; McCreery RL
    ACS Nano; 2017 Apr; 11(4):3542-3552. PubMed ID: 28238263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge transport in hybrid platinum/molecule/graphene single molecule junctions.
    He C; Zhang Q; Gao T; Liu C; Chen Z; Zhao C; Zhao C; Nichols RJ; Dappe YJ; Yang L
    Phys Chem Chem Phys; 2020 Jun; 22(24):13498-13504. PubMed ID: 32530005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: critical analysis of metal oxides and filaments.
    Bergren AJ; Harris KD; Deng F; McCreery RL
    J Phys Condens Matter; 2008 Sep; 20(37):374117. PubMed ID: 21694424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge injection and transport properties of large area organic junctions based on aryl thin films covalently attached to a multilayer graphene electrode.
    Barraud C; Lemaitre M; Bonnet R; Rastikian J; Salhani C; Lau S; van Nguyen Q; Decorse P; Lacroix JC; Della Rocca ML; Lafarge P; Martin P
    Nanoscale Adv; 2019 Jan; 1(1):414-420. PubMed ID: 36132450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge transport in molecular electronic junctions: compression of the molecular tunnel barrier in the strong coupling regime.
    Sayed SY; Fereiro JA; Yan H; McCreery RL; Bergren AJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11498-503. PubMed ID: 22660930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: effect of surface linking group and metal work function.
    Kim B; Choi SH; Zhu XY; Frisbie CD
    J Am Chem Soc; 2011 Dec; 133(49):19864-77. PubMed ID: 22017173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon/molecule/metal molecular electronic junctions: the importance of "contacts".
    McCreery RL; Viswanathan U; Kalakodimi RP; Nowak AM
    Faraday Discuss; 2006; 131():33-43; discussion 91-109. PubMed ID: 16512363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Rectification in Molecular Junctions: Contact Effects and Molecular Signature.
    Nguyen QV; Martin P; Frath D; Della Rocca ML; Lafolet F; Barraud C; Lafarge P; Mukundan V; James D; McCreery RL; Lacroix JC
    J Am Chem Soc; 2017 Aug; 139(34):11913-11922. PubMed ID: 28780873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong effects of molecular structure on electron transport in carbon/molecule/copper electronic junctions.
    Anariba F; Steach JK; McCreery RL
    J Phys Chem B; 2005 Jun; 109(22):11163-72. PubMed ID: 16852362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene-gold nanogap electrodes.
    Liu L; Zhang Q; Tao S; Zhao C; Almutib E; Al-Galiby Q; Bailey SW; Grace I; Lambert CJ; Du J; Yang L
    Nanoscale; 2016 Aug; 8(30):14507-13. PubMed ID: 27412865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions.
    Cheng ZL; Skouta R; Vazquez H; Widawsky JR; Schneebeli S; Chen W; Hybertsen MS; Breslow R; Venkataraman L
    Nat Nanotechnol; 2011 May; 6(6):353-7. PubMed ID: 21552252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application.
    Liu J; Huang X; Wang F; Hong W
    Acc Chem Res; 2019 Jan; 52(1):151-160. PubMed ID: 30500161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.