These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 26925357)
1. Single pyrimidine discrimination during voltage-driven translocation of osmylated oligodeoxynucleotides via the α-hemolysin nanopore. Ding Y; Kanavarioti A Beilstein J Nanotechnol; 2016; 7():91-101. PubMed ID: 26925357 [TBL] [Abstract][Full Text] [Related]
2. False positives and false negatives measure less than 0.001% in labeling ssDNA with osmium tetroxide 2,2'-bipyridine. Kanavarioti A Beilstein J Nanotechnol; 2016; 7():1434-1446. PubMed ID: 27826518 [TBL] [Abstract][Full Text] [Related]
3. Nanopore device-based fingerprinting of RNA oligos and microRNAs enhanced with an Osmium tag. Sultan M; Kanavarioti A Sci Rep; 2019 Oct; 9(1):14180. PubMed ID: 31578367 [TBL] [Abstract][Full Text] [Related]
4. Osmylated DNA, a novel concept for sequencing DNA using nanopores. Kanavarioti A Nanotechnology; 2015 Mar; 26(13):134003. PubMed ID: 25760070 [TBL] [Abstract][Full Text] [Related]
5. Ready-to-use nanopore platform for the detection of any DNA/RNA oligo at attomole range using an Osmium tagged complementary probe. Kang ASW; Bernasconi JG; Jack W; Kanavarioti A Sci Rep; 2020 Nov; 10(1):19790. PubMed ID: 33188229 [TBL] [Abstract][Full Text] [Related]
6. Osmium-Based Pyrimidine Contrast Tags for Enhanced Nanopore-Based DNA Base Discrimination. Henley RY; Vazquez-Pagan AG; Johnson M; Kanavarioti A; Wanunu M PLoS One; 2015; 10(12):e0142155. PubMed ID: 26657869 [TBL] [Abstract][Full Text] [Related]
7. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034 [TBL] [Abstract][Full Text] [Related]
8. Single-molecule detection of a guanine(C8) - thymine(N3) cross-link using ion channel recording. Wolna AH; Fleming AM; Burrows CJ J Phys Org Chem; 2014 Apr; 27(4):247-251. PubMed ID: 25147426 [TBL] [Abstract][Full Text] [Related]
9. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study. De Biase PM; Ervin EN; Pal P; Samoylova O; Markosyan S; Keehan MG; Barrall GA; Noskov SY Nanoscale; 2016 Jun; 8(22):11571-9. PubMed ID: 27210516 [TBL] [Abstract][Full Text] [Related]
10. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. Tan CS; Fleming AM; Ren H; Burrows CJ; White HS J Am Chem Soc; 2018 Oct; 140(43):14224-14234. PubMed ID: 30269492 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide discrimination with DNA immobilized in the MspA nanopore. Manrao EA; Derrington IM; Pavlenok M; Niederweis M; Gundlach JH PLoS One; 2011; 6(10):e25723. PubMed ID: 21991340 [TBL] [Abstract][Full Text] [Related]
13. Retarded Translocation of Nucleic Acids through α-Hemolysin Nanopore in the Presence of a Calcium Flux. Wang S; Wang Y; Yan S; Du X; Zhang P; Chen HY; Huang S ACS Appl Mater Interfaces; 2020 Jun; 12(24):26926-26935. PubMed ID: 32432849 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore. Zhang X; Price NE; Fang X; Yang Z; Gu LQ; Gates KS ACS Nano; 2015 Dec; 9(12):11812-9. PubMed ID: 26563913 [TBL] [Abstract][Full Text] [Related]
15. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. Vu T; Borgesi J; Soyring J; D'Alia M; Davidson SL; Shim J Nanoscale; 2019 May; 11(21):10536-10545. PubMed ID: 31116213 [TBL] [Abstract][Full Text] [Related]
16. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations. Manara RM; Tomasio S; Khalid S Nanomaterials (Basel); 2015 Jan; 5(1):144-153. PubMed ID: 28347003 [TBL] [Abstract][Full Text] [Related]
17. Detecting translocation of individual single stranded DNA homopolymers through a fabricated nanopore chip. Kim YR; Li CM; Wang Q; Chen P Front Biosci; 2007 May; 12():2978-83. PubMed ID: 17485274 [TBL] [Abstract][Full Text] [Related]
18. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor. Kim J; Maitra RD; Pedrotti K; Dunbar WB Sens Actuators B Chem; 2013 Feb; 177():1075-1082. PubMed ID: 24496266 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore. Tan CS; Riedl J; Fleming AM; Burrows CJ; White HS ACS Nano; 2016 Dec; 10(12):11127-11135. PubMed ID: 28024377 [TBL] [Abstract][Full Text] [Related]
20. Nanopore-Assisted, Sequence-Specific Detection, and Single-Molecule Hybridization Analysis of Short, Single-Stranded DNAs. Mereuta L; Asandei A; Schiopu I; Park Y; Luchian T Anal Chem; 2019 Jul; 91(13):8630-8637. PubMed ID: 31194518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]