These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26925619)

  • 1. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.
    Yang L; Lübeck M; Souroullas K; Lübeck PS
    World J Microbiol Biotechnol; 2016 Apr; 32(4):57. PubMed ID: 26925619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.
    Yang L; Lübeck M; Lübeck PS
    AMB Express; 2014; 4():54. PubMed ID: 25401063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase on organic acid production in Aspergillus carbonarius.
    Yang L; Lübeck M; Lübeck PS
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1533-45. PubMed ID: 26403577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates.
    Tomás-Pejó E; Olsson L
    Microb Biotechnol; 2015 Nov; 8(6):999-1005. PubMed ID: 25989314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains.
    Saha BC; Kennedy GJ
    J Microbiol Methods; 2018 Jan; 144():53-59. PubMed ID: 29109012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400.
    Erdei B; Frankó B; Galbe M; Zacchi G
    J Biotechnol; 2013 Mar; 164(1):50-8. PubMed ID: 23262129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes.
    Zheng P; Dong JJ; Sun ZH; Ni Y; Fang L
    Bioresour Technol; 2009 Apr; 100(8):2425-9. PubMed ID: 19128958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor.
    Cubas-Cano E; González-Fernández C; Ballesteros M; Tomás-Pejó E
    Biotechnol Prog; 2019 Jan; 35(1):e2739. PubMed ID: 30378762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors Affecting Production of Itaconic Acid from Mixed Sugars by Aspergillus terreus.
    Saha BC; Kennedy GJ; Bowman MJ; Qureshi N; Dunn RO
    Appl Biochem Biotechnol; 2019 Feb; 187(2):449-460. PubMed ID: 29974379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic effects on sugar and by-products of liquid hydrolysates and on saccharification of acid-insoluble residues from wheat straw.
    Ohno R; Teramura H; Ogino C; Kondo A; Takumi S
    Genes Genet Syst; 2018 Jul; 93(1):1-7. PubMed ID: 29343667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species.
    Copetti MV; Iamanaka BT; Mororó RC; Pereira JL; Frisvad JC; Taniwaki MH
    Int J Food Microbiol; 2012 Apr; 155(3):158-64. PubMed ID: 22349177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partitioning of ochratoxin A in mycelium and conidia of Aspergillus carbonarius and the impact on toxin contamination of grapes and wine.
    Atoui A; Mitchell D; Mathieu F; Magan N; Lebrihi A
    J Appl Microbiol; 2007 Oct; 103(4):961-8. PubMed ID: 17897199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii.
    Qureshi N; Saha BC; Cotta MA
    Bioprocess Biosyst Eng; 2007 Nov; 30(6):419-27. PubMed ID: 17609986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw.
    Erdei B; Frankó B; Galbe M; Zacchi G
    Biotechnol Biofuels; 2012 Mar; 5():12. PubMed ID: 22410131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production.
    Kolasa M; Ahring BK; Lübeck PS; Lübeck M
    Bioresour Technol; 2014 Oct; 169():143-148. PubMed ID: 25043347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.