BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26925699)

  • 1. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2016 Jul; 60():356-366. PubMed ID: 26925699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bowstring Stretching and Quantitative Imaging of Single Collagen Fibrils via Atomic Force Microscopy.
    Quigley AS; Veres SP; Kreplak L
    PLoS One; 2016; 11(9):e0161951. PubMed ID: 27598334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining tensile testing and structural analysis at the single collagen fibril level.
    Quigley AS; Bancelin S; Deska-Gauthier D; Légaré F; Veres SP; Kreplak L
    Sci Data; 2018 Oct; 5():180229. PubMed ID: 30351303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
    Baldwin SJ; Quigley AS; Clegg C; Kreplak L
    Biophys J; 2014 Oct; 107(8):1794-1801. PubMed ID: 25418160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage-like U937 cells recognize collagen fibrils with strain-induced discrete plasticity damage.
    Veres SP; Brennan-Pierce EP; Lee JM
    J Biomed Mater Res A; 2015 Jan; 103(1):397-408. PubMed ID: 24616426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state.
    Veres SP; Harrison JM; Lee JM
    Matrix Biol; 2014 Jan; 33():54-9. PubMed ID: 23880369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta.
    Kemp AD; Harding CC; Cabral WA; Marini JC; Wallace JM
    J Struct Biol; 2012 Dec; 180(3):428-38. PubMed ID: 23041293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner.
    Gutsmann T; Fantner GE; Venturoni M; Ekani-Nkodo A; Thompson JB; Kindt JH; Morse DE; Fygenson DK; Hansma PK
    Biophys J; 2003 Apr; 84(4):2593-8. PubMed ID: 12668467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of type VI collagen with D-periodic collagen fibrils in developing tail tendons of mice.
    Watanabe M; Kobayashi M; Fujita Y; Senga K; Mizutani H; Ueda M; Hoshino T
    Arch Histol Cytol; 1997 Dec; 60(5):427-34. PubMed ID: 9477151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.
    Wu JP; Swift BJ; Becker T; Squelch A; Wang A; Zheng YC; Zhao X; Xu J; Xue W; Zheng M; Lloyd D; Kirk TB
    J Microsc; 2017 Jun; 266(3):273-287. PubMed ID: 28252807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phase measurements of tendon collagen fibres.
    Maciel D; Veres SP; Kreuzer HJ; Kreplak L
    J Biophotonics; 2017 Jan; 10(1):111-117. PubMed ID: 26824333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of rat tail tendon collagen examined by atomic force microscope.
    Aragno I; Odetti P; Altamura F; Cavalleri O; Rolandi R
    Experientia; 1995 Nov; 51(11):1063-7. PubMed ID: 7498446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.