These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26925722)

  • 1. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.
    Huang T; Cheng Y; Zheng Y
    Colloids Surf B Biointerfaces; 2016 Jun; 142():20-29. PubMed ID: 26925722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.
    Liu Y; Bian D; Wu Y; Li N; Qiu K; Zheng Y; Han Y
    Colloids Surf B Biointerfaces; 2015 Sep; 133():99-107. PubMed ID: 26094143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials.
    Huang T; Cheng J; Bian D; Zheng Y
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):225-40. PubMed ID: 25727071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.
    Huang T; Cheng J; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays.
    Huang T; Zheng Y
    Sci Rep; 2016 Apr; 6():23627. PubMed ID: 27033380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating degradation rate of pure iron by zinc ion implantation.
    Huang T; Zheng Y; Han Y
    Regen Biomater; 2016 Dec; 3(4):205-15. PubMed ID: 27482462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering.
    Cheng J; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):485-97. PubMed ID: 23359385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays.
    Cheng J; Huang T; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():679-87. PubMed ID: 25579971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.
    Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N
    Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron.
    Nie FL; Zheng YF; Wei SC; Hu C; Yang G
    Biomed Mater; 2010 Dec; 5(6):065015. PubMed ID: 21079282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications.
    Ulum MF; Arafat A; Noviana D; Yusop AH; Nasution AK; Abdul Kadir MR; Hermawan H
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():336-44. PubMed ID: 24433920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies.
    Moravej M; Purnama A; Fiset M; Couet J; Mantovani D
    Acta Biomater; 2010 May; 6(5):1843-51. PubMed ID: 20080213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application.
    Obayi CS; Tolouei R; Mostavan A; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Mantovani D
    Biomatter; 2016; 6(1):e959874. PubMed ID: 25482336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application.
    Chen H; Zhang E; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():201-6. PubMed ID: 24268250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites.
    Hsu SH; Tseng HJ; Lin YC
    Biomaterials; 2010 Sep; 31(26):6796-808. PubMed ID: 20542329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes.
    Mei S; Wang H; Wang W; Tong L; Pan H; Ruan C; Ma Q; Liu M; Yang H; Zhang L; Cheng Y; Zhang Y; Zhao L; Chu PK
    Biomaterials; 2014 May; 35(14):4255-65. PubMed ID: 24565524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.
    Qiu KJ; Liu Y; Zhou FY; Wang BL; Li L; Zheng YF; Liu YH
    Acta Biomater; 2015 Mar; 15():254-65. PubMed ID: 25595472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.