These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 26925964)
1. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Hendrikx S; Kascholke C; Flath T; Schumann D; Gressenbuch M; Schulze FP; Hacker MC; Schulz-Siegmund M Acta Biomater; 2016 Apr; 35():318-29. PubMed ID: 26925964 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Dong Y; Liang J; Cui Y; Xu S; Zhao N Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604 [TBL] [Abstract][Full Text] [Related]
4. Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Wang D; Liu W; Feng Q; Dong C; Liu Q; Duan L; Huang J; Zhu W; Li Z; Xiong J; Liang Y; Chen J; Sun R; Bian L; Wang D Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):969-975. PubMed ID: 27772728 [TBL] [Abstract][Full Text] [Related]
5. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Martin RA; Yue S; Hanna JV; Lee PD; Newport RJ; Smith ME; Jones JR Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1422-43. PubMed ID: 22349249 [TBL] [Abstract][Full Text] [Related]
6. Chitosan-silica hybrid porous membranes. Pandis C; Madeira S; Matos J; Kyritsis A; Mano JF; Ribelles JL Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():553-61. PubMed ID: 25063153 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
8. Robocasting of Cu Ben-Arfa BAE; Neto S; Miranda Salvado IM; Pullar RC; Ferreira JMF Acta Biomater; 2019 Mar; 87():265-272. PubMed ID: 30690209 [TBL] [Abstract][Full Text] [Related]
9. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
10. Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering. Kuzmenka D; Sewohl C; König A; Flath T; Hahnel S; Schulze FP; Hacker MC; Schulz-Siegmund M Pharmaceutics; 2020 Dec; 12(12):. PubMed ID: 33302527 [TBL] [Abstract][Full Text] [Related]
11. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
12. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056 [TBL] [Abstract][Full Text] [Related]
13. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional polyethylene imine hybrids decorated by silica bioactive glass with enhanced mechanical properties, antibacterial, and osteogenesis for bone repair. Aghayan M; Alizadeh P; Keshavarz M Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112534. PubMed ID: 34857311 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480 [TBL] [Abstract][Full Text] [Related]
16. Sol-gel silica-based biomaterials and bone tissue regeneration. Arcos D; Vallet-Regí M Acta Biomater; 2010 Aug; 6(8):2874-88. PubMed ID: 20152946 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Sánchez-Salcedo S; García A; González-Jiménez A; Vallet-Regí M Acta Biomater; 2023 Jan; 155():654-666. PubMed ID: 36332875 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]