These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 26925964)
21. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691 [TBL] [Abstract][Full Text] [Related]
22. Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix. Aguiar VCPF; Bezerra RDN; Dos Santos KW; Gonçalves IDS; Costa KJSG; Lauda DP; Campos TMB; do Prado RF; de Vasconcellos LMR; de Oliveira IR J Biomater Sci Polym Ed; 2024 Jul; 35(10):1493-1510. PubMed ID: 38569077 [TBL] [Abstract][Full Text] [Related]
23. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
24. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
25. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
26. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds. Mooyen S; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456 [TBL] [Abstract][Full Text] [Related]
27. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Kang MH; Lee H; Jang TS; Seong YJ; Kim HE; Koh YH; Song J; Jung HD Acta Biomater; 2019 Jan; 84():453-467. PubMed ID: 30500444 [TBL] [Abstract][Full Text] [Related]
28. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. Liu X; Rahaman MN; Hilmas GE; Bal BS Acta Biomater; 2013 Jun; 9(6):7025-34. PubMed ID: 23438862 [TBL] [Abstract][Full Text] [Related]
29. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. Gao W; Sun L; Zhang Z; Li Z J Biomater Sci Polym Ed; 2020 Jun; 31(8):984-998. PubMed ID: 32100612 [TBL] [Abstract][Full Text] [Related]
30. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration. Chung JJ; Fujita Y; Li S; Stevens MM; Kasuga T; Georgiou TK; Jones JR Acta Biomater; 2017 May; 54():411-418. PubMed ID: 28285078 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143 [TBL] [Abstract][Full Text] [Related]
33. Creation of bioactive glass (13-93) scaffolds for structural bone repair using a combined finite element modeling and rapid prototyping approach. Xiao W; Zaeem MA; Bal BS; Rahaman MN Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():651-662. PubMed ID: 27524065 [TBL] [Abstract][Full Text] [Related]
34. Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties. Cohn N; Bradtmüller H; Zanotto E; von Marttens A; Covarrubias C Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672498 [TBL] [Abstract][Full Text] [Related]
35. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
36. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548 [TBL] [Abstract][Full Text] [Related]
37. Degradation, bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses. Pamula E; Kokoszka J; Cholewa-Kowalska K; Laczka M; Kantor L; Niedzwiedzki L; Reilly GC; Filipowska J; Madej W; Kolodziejczyk M; Tylko G; Osyczka AM Ann Biomed Eng; 2011 Aug; 39(8):2114-29. PubMed ID: 21487840 [TBL] [Abstract][Full Text] [Related]
38. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
39. Robust and nanostructured chitosan-silica hybrids for bone repair application. Liang JN; Yan LP; Dong YF; Liu X; Wu G; Zhao NR J Mater Chem B; 2020 Jun; 8(23):5042-5051. PubMed ID: 32396152 [TBL] [Abstract][Full Text] [Related]
40. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]