These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26926099)

  • 21. Construction of magnetic nanoflower biocatalytic system with enhanced enzymatic performance by biomineralization and its application for bisphenol A removal.
    Han J; Luo P; Wang L; Li C; Mao Y; Wang Y
    J Hazard Mater; 2019 Dec; 380():120901. PubMed ID: 31330392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability.
    Altinkaynak C; Tavlasoglu S; Özdemir N; Ocsoy I
    Enzyme Microb Technol; 2016 Nov; 93-94():105-112. PubMed ID: 27702469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities.
    Bilal M; Asgher M; Shah SZH; Iqbal HMN
    Int J Biol Macromol; 2019 Aug; 135():677-690. PubMed ID: 31152838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast sonochemical synthesis of protein-inorganic nanoflowers.
    Batule BS; Park KS; Kim MI; Park HG
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):137-42. PubMed ID: 26346235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.
    Altinkaynak C; Kocazorbaz E; Özdemir N; Zihnioglu F
    Int J Biol Macromol; 2018 Apr; 109():205-211. PubMed ID: 29253544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.
    He G; Hu W; Li CM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():613-618. PubMed ID: 26322475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis.
    Gao J; Liu H; Tong C
    Inorg Chem; 2023 Aug; 62(34):13812-13823. PubMed ID: 37584534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor.
    Sun S; Zhang X; Sun Y; Yang S; Song X; Yang Z
    Phys Chem Chem Phys; 2013 Jul; 15(26):10904-13. PubMed ID: 23698563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-inorganic hybrid nanoflowers.
    Ge J; Lei J; Zare RN
    Nat Nanotechnol; 2012 Jun; 7(7):428-32. PubMed ID: 22659609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile synthesis of magnetic hierarchical flower-like Co
    Liu X; Yan L; Ren H; Cai Y; Liu C; Zeng L; Guo J; Liu A
    Biosens Bioelectron; 2020 Oct; 165():112342. PubMed ID: 32729485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cu(II)-catalyzed reactions in ternary [Cu(AA)(AA - H)]+ complexes (AA = Gly, Ala, Val, Leu, Ile, t-Leu, Phe).
    Wang P; Ohanessian G; Wesdemiotis C
    Eur J Mass Spectrom (Chichester); 2009; 15(2):325-35. PubMed ID: 19423917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications.
    Liang X; Liu Y; Wen K; Jiang W; Li Q
    J Mater Chem B; 2021 Sep; 9(37):7597-7607. PubMed ID: 34596205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization and photocatalytic activity of CuO nanoflowers.
    Umadevi M; Jegatha Christy A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():133-7. PubMed ID: 23518510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection.
    Ma Y; Zhao M; Cai B; Wang W; Ye Z; Huang J
    Biosens Bioelectron; 2014 Sep; 59():384-8. PubMed ID: 24755255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of porous Cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose.
    Li A; Mu X; Li T; Wen H; Li W; Li Y; Wang B
    Nanoscale; 2018 Jul; 10(25):11948-11954. PubMed ID: 29901675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silk Industry Waste Protein-Derived Sericin Hybrid Nanoflowers for Antibiotics Remediation via Circular Economy.
    Koshy DS; Allardyce BJ; Dumée LF; Sutti A; Rajkhowa R; Agrawal R
    ACS Omega; 2024 Apr; 9(14):15768-15780. PubMed ID: 38617643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors.
    Gulmez C; Altinkaynak C; Ozturkler M; Ozdemir N; Atakisi O
    J Biosci Bioeng; 2021 Oct; 132(4):327-336. PubMed ID: 34334311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired DNA-Inorganic Hybrid Nanoflowers Combined with a Personal Glucose Meter for Onsite Detection of miRNA.
    Wu T; Yang Y; Cao Y; Song Y; Xu LP; Zhang X; Wang S
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42050-42057. PubMed ID: 30457317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemoglobin-Inorganic Hybrid Nanoflowers with Different Metal Ions as Potential Oxygen Carrying Systems.
    Gulmez C; Altinkaynak C; Turk M; Ozdemir N; Atakisi O
    Chem Biodivers; 2022 Jan; 19(1):e202100683. PubMed ID: 34813152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection.
    Song MJ; Hwang SW; Whang D
    Talanta; 2010 Mar; 80(5):1648-52. PubMed ID: 20152391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.